【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.
【答案】解:( I)∵出租天数为3天的汽车A型车有30辆,B型车20辆.从中随机抽取一辆,这辆汽车是A型车的概率约为 =0.6.
( II)设“事件Ai表示一辆A型车在一周内出租天数恰好为i天”,
“事件Bj表示一辆B型车在一周内出租天数恰好为j天”,其中i,j=1,2,…,7.
则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为
P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1)
=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)
=
= .
该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为 .
(Ⅲ)设X为A型车出租的天数,则X的分布列为
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P | 0.05 | 0.10 | 0.30 | 0.35 | 0.15 | 0.03 | 0.02 |
设Y为B型车出租的天数,则Y的分布列为
Y | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P | 0.14 | 0.20 | 0.20 | 0.16 | 0.15 | 0.10 | 0.05 |
E(X)=1×0.05+2×0.10+3×0.30+4×0.35+5×0.15+6×0.03+7×0.02=3.62.
E(Y)=1×0.14+2×0.20+3×0.20+4×0.16+5×0.15+6×0.10+7×0.05=3.48.
一辆A类型的出租车一个星期出租天数的平均值为3.62天,B类车型一个星期出租天数的平均值为3.48天.
从出租天数的数据来看,A型车出租天数的方差大于B型车出租天数的方差,综合分析,选择A类型的出租车更加合理
【解析】(Ⅰ)利用古典概型的概率计算公式即可得出;(Ⅱ)该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天分为以下三种情况:A型车1天B型车3天;A型车B型车都2天;A型车3天B型车1天,利用互斥事件和独立事件的概率计算公式即可得出;(Ⅱ)从数学期望和方差分析即可得出结论.
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的图象关于y轴对称,当x∈(0,+∞)时,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),则a,b,c的大小关系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知一艘海监船O上配有雷达,其监测范围是半径为25 km的圆形区域,一艘外籍轮船从位于海监船正东40 km的A处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.
问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设[x]表示不超过x的最大整数,如:[π]=3,[﹣4.3]=﹣5.给出下列命题: ①对任意实数x,都有[x]﹣x≤0;
②若x1≤x2 , 则[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函数f(x)= ﹣ ,则y=[f(x)]+[f(﹣x)]的值域为{﹣1,0}.
其中所有真命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣2ax﹣8a2(a>0),记不等式f(x)≤0的解集为A.
(1)当a=1时,求集合A;
(2)若(﹣1,1)A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面, , , , , , .
(I)求异面直线与所成角的余弦值;
(II)求证: 平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com