精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为
3

(1)求椭圆C的方程;
(2)设直线y=kx+
2
与椭圆C交于A、B两点,求K的取值范围;
(3)若以AB为直径作圆,过点O作圆的切线可作两条,求k的取值范围.
分析:(1)设椭圆的半焦距为c,根据椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为
3
,可求椭圆C的方程;
(2)将直线y=kx+
2
代入椭圆C的方程
x2
3
+y2=1
,可得(1+3k2)x2+6
2
kx+3=0
,根据直线y=kx+
2
与椭圆C交于A、B两点,可得
1+3k2≠0
△=(6
2
k)
2
-12(1+3k2)=12(3k2-1)>0
,从而可求k的取值范围.
(3)以AB为直径作圆,过点O作圆的切线可作两条,则点O在圆外.设A(x1,y1),B(x2,y2),则x1x2+y1y2>0,利用韦达定理,由此可求k的取值范围.
解答:解:(1)设椭圆的半焦距为c,则由题意
∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为
3

c
a
=
6
3
a=
3
,∴c=
2
,∴b=
a2-c2
=1

∴椭圆C的方程为
x2
3
+y2=1

(2)将直线y=kx+
2
代入椭圆C的方程
x2
3
+y2=1
,可得(1+3k2)x2+6
2
kx+3=0

∵直线y=kx+
2
与椭圆C交于A、B两点
1+3k2≠0
△=(6
2
k)
2
-12(1+3k2)=12(3k2-1)>0

k2
1
3

k>
3
3
k<-
3
3

(3)设A(x1,y1),B(x2,y2
x1+x2=
-6
2
k
1+3k2
x1x2=
3
1+3k2

∴x1x2+y1y2=x1x2+(kx1+
2
)(kx2+
2
)

=(k2+1)x1x2+
2
k(x1+x2)+2

=(k2+1)×
3
1+3k2
+
2
-6
2
k
1+3k2
+2
=
5-3k2
1+3k2
>0

∴5-3k2>0
k2
1
3

1
3
 <k2
5
3

3
3
<k<
15
3
-
15
3
<k<-
3
3
点评:本题以椭圆的性质为载体,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,解题的关键是将以AB为直径作圆,过点O作圆的切线可作两条,转化为点O在圆外
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案