精英家教网 > 高中数学 > 题目详情
19.将函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,所得函数的解析式为(  )
A.$y=3sin(2x-\frac{π}{6})$B.y=3cos2xC.$y=3sin(2x+\frac{π}{3})$D.y=3sin2x

分析 根据正弦函数图象平移法则,写出对应的函数解析式即可.

解答 解:函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,
所得函数的解析式为y=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]=3sin(2x-$\frac{π}{6}$).
故选:A.

点评 本题考查了正弦函数图象平移法则与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知△ABC的三顶点分别为A(1,4,1),B(1,2,3),C(2,3,1).则AB边上的高等于(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某程序框图如图所示,则该程序运行后输出的B等于(  )
A.2B.5C.14D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC=$\frac{1}{2}$AD=2,CD=4
(1)求证:直线PA∥平面QMB;
(2)若PC=2$\sqrt{5}$,求三棱锥P-MBQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是(  )
A.(2x+2)5B.2x5C.(2x-1)5D.32x5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x2+2x-1在[0,3]上最小值为(  )
A.0B.-4C.-1D.-2

查看答案和解析>>

同步练习册答案