精英家教网 > 高中数学 > 题目详情
2.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),
(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人;
(3)在(2)中抽取的5人中,随机抽取2 人,求分数在[40,50)和[50,60)各1 人的概率.

分析 (1)由频率分布直方图先求出分数在[70,80)内的概率,由此能求出分数在[70,80)中的人数.
(2)分数在[40,50)的学生有10人,分数在[50,60)的学生有15人,由此能求出用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,抽取的5人中分数在[40,50)的人数.
(3)用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,抽取的5人中分数在[40,50)的有2人分数在[50,60)的有3人,由此利用等可能事件概率计算公式能求出分数在[40,50)和[50,60)各1 人的概率.

解答 解:(1)由频率分布直方图知小长方形面积为对应区间概率,
所有小长方形面积和为1,因此分数在[70,80)内的概率为:
1-(0.005+0.010+0.015×2+0.025)×10=0.3,
∴分数在[70,80)中的人数为:0.3×100=30人.…5分
(2)分数在[40,50)的学生有:0.010×10×100=10人,
分数在[50,60)的学生有:0.015×10×100=15人,
用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,
抽取的5人中分数在[40,50)的人有:5×$\frac{10}{10+15}$=2人.…9分
(3)分数在[40,50)的学生有10人,分数在[50,60)的学生有15人,
用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,
抽取的5人中分数在[40,50)的有2人分数在[50,60)的有3人,
5人中随机抽取2 人共有n=${C}_{5}^{2}$=10种可能,
分别在不同区间上有m=${C}_{2}^{1}{C}_{3}^{1}$=6种可能.
所以分数在[40,50)和[50,60)各1 人的概率$P=\frac{6}{10}=\frac{3}{5}$.…14分.

点评 本题考查频率分布直方图、分层抽样的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=sin(2x+$\frac{π}{3}$),对任意的x1,x2,x3,且0≤x1<x2<x3≤π,都有|f(x1)-f(x2)|+|f(x2)-f(x3)|≤m成立,则实数m的最小值为3+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC中,A:B:C=1:1:4,则a:b:c等于(  )
A.1:1:$\sqrt{3}$B.2:2:$\sqrt{3}$C.1:1:2D.1:1:4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF和线段FQ的长分别是p,q,则$\frac{1}{p}+\frac{1}{q}$等于(  )
A.$\frac{1}{4a}$B.$\frac{1}{2a}$C.2aD.4a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+|x|)dx=$\frac{π}{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c为直角三角形中的三边长,c为斜边长,若点M(m,n)在直线l:ax+by+3c=0上,则m2+n2的最小值为(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)对任意的x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=4,则f(1)=(  )
A.-2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,点P到两点$({0,\sqrt{3}}),({0,-\sqrt{3}})$的距离之和等于4,设点P的轨迹为C
(1)写出曲线C的标准方程
(2)设直线y=kx+1与曲线C交于A,B两点,求当k为何值时,能使∠AOB=90°?
(3)在(2)的条件下,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },则A∩B=(  )
A.{ 1,4}B.{ 2,4}C.{ 9,16}D.{2,3}

查看答案和解析>>

同步练习册答案