精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且2ccos2
A
2
=b+c,则△ABC的形状是(  )
A、正三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
分析:首先根据二倍角公式化简所给的式子,然后余弦定理可知cosA=
b2+c2-a2
2bc
代入化简后的式子,即可得出答案.
解答:解:∵2ccos2
A
2
=2c(
1+cosA
2
)=c+ccosA=b+c
∴cosA=
b
c

∵在△ABC中,cosA=
b2+c2-a2
2bc

b
c
=
b2+c2-a2
2bc

整理得:c2=a2+b2
故△ABC为直角三角形.
故选:B.
点评:本题主要考查了二倍角公式和余弦定理的运用,熟练掌握公式和定理是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案