精英家教网 > 高中数学 > 题目详情
函数f(x)=2x+1+x 
1
2
的值域是
 
考点:函数的值域
专题:函数的性质及应用
分析:由指数函数和幂函数的单调性得到原函数在定义域内为增函数,由此求得函数的值域.
解答: 解:函数f(x)=2x+1+x 
1
2
的定义域为[0,+∞),
又函数y1=2x+1在[0,+∞)上为增函数,
函数y2=x
1
2
在[0,+∞)上为增函数,
∴函数f(x)=2x+1+x 
1
2
在[0,+∞)上为增函数,
则当x=0时函数f(x)=2x+1+x 
1
2
有最小值为20+1+0
1
2
=2

∴函数f(x)=2x+1+x 
1
2
的值域是[2,+∞).
故答案为:[2,+∞).
点评:本题考查了指数函数和幂函数的单调性,考查了由函数的单调性求函数的值域,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出两条平行直线L1:3x-4y-1=0,L2:3x-4y+2=0,则这两条直线间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)当m=3时,求集合A∩B(∁RA)∩B;
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司试销 一种新产品,规定试销时销售单 价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件),可近似看做一次函数y=kx+b的关系(图象如图所示). 
(1)根据图象,求一次函数y=kx+b的表达式; 
(2)设公司获得的毛利润(毛利润=销售 总价-成本总价)为S元,①求S关于x的函数表达式; ②求该公司可获得的最大毛利润,并求出 此时相应的销售单价.x=600y=600.x=700y=450.

查看答案和解析>>

科目:高中数学 来源: 题型:

永安市教育局在2013年高职单招考试成绩中随机抽取100名学生的成绩,按成绩分组,得到频率分布表如下所示:
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)
 
0.350
第3组[170,175)30
 
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.000
(1)请先求出频率分布表中①②位置相应的数据(直接写在表中),再将如图频率分布直方图补充完整;
(2)教育局决定在成绩高的第3,4,5组中用分层抽样抽取6名学生进行奖励,则第3,4,5组每组各抽取多少名学生?

查看答案和解析>>

科目:高中数学 来源: 题型:

动物园要围成面积相同的长方形虎笼四间,一面可利用原有的墙,其它各面用钢筋网围成.
(1)现有可围36m长的钢筋网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?
(2)若使每间虎笼的面积为20m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行六面体ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=∠BAA′=∠DAA′=60°,则AC′的长为(  )
A、5
2
B、
62
C、10
D、
97

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
a
x
(a∈R).
(1)试判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞]上是增函数,求实数a的取值范围;
(3)当a=0时,利用(1)(2)的结论,指出f(x)在区间(-∞,-3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
a
b
上的投影分别是1与2,且|
c
|=
10
,则
c
a
+
b
所成夹角等于
 

查看答案和解析>>

同步练习册答案