精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°OAD中点.

(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD

(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求的值,如不存在,说明理由.

【答案】1)详见解析;(2)存在,

【解析】

)由题意可知,又为菱形且,所以,根据线面垂直的判定定理可得平面,然后再根据面面平行的判定定理可证平面平面

)建立空间直角坐标系,利用二面角的余弦值列方程,由此求得的值.

)因为中点,所以.

因为四边形为菱形且,所以.因为,所以平面.因为平面,所以平面平面.

)因为平面平面,且交线为,所以平面.为坐标原点,轴建立空间直角坐标系如图所示.

所以,设,所以.平面的法向量为.设平面的法向量为,则,令,则可得.

由于二面角的大小为,所以,即,解得.所以存在点使二面角的大小为,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得

1)求家庭的月储蓄对月收入的线性回归方程

2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

(附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60,镇有基层干部60,镇有基层干部80,每人都走访了若干贫困户,按照分层抽样,三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5,,绘制成如图所示的频率分布直方图.

(1)求这40人中有多少人来自,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)

(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,三镇的所有基层干部中随机选取3,记这3人中工作出色的人数为,的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+sin x,x∈(-1,1),则满足f(a2-1)+f(a-1)>0的a的取值范围是( )

A. (0,2)B. (1,)C. (1,2)D. (0,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像与曲线恰好有两个不同的公共点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,为坐标原点.

(1)若直线斜率为1,过椭圆的右焦点,求弦的长;

(2)若,且为锐角,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点作斜率为1的直线交抛物线两点,且线段的中点的纵坐标为4.

(1)求抛物线的标准方程;

(2)若不过原点且斜率存在的直线与抛物线相交于两点,且.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差(单位:分)与历史偏差(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:

学生序号

1

2

3

4

5

6

7

8

数学偏差

20

15

13

3

2

历史偏差

1)已知之间具有线性相关关系,求关于的线性回归方程

2)若这次考试该班数学平均分为118分,历史平均分为,试预测数学成绩126分的同学的历史成绩.

附:参考公式与参考数据

查看答案和解析>>

同步练习册答案