精英家教网 > 高中数学 > 题目详情

已知函数为常数),直线与函数的图象都相切,且与函数图象的切点的横坐标为
(1)求直线的方程及的值;
(2)若 [注:的导函数],求函数的单调递增区间;
(3)当时,试讨论方程的解的个数.

(1)  ;  ;(2)  ;(3)详见解析.

解析试题分析:(1)利用函数在处的导数,等于在处切线的斜率,所以先求,再求,直线的斜率就是,直线过点,代入得到直线的方程,直线的图象相切,所以代入联立,得到值;(2)先求, 得到,再求,令,得到的取值范围,即求得函数的单调递增区间;(3)令,再求,得到极值点,然后列表分析当变化时,的变化情况,结合为偶函数,画出的函数图形,再画,当直线上下变化时,可以看出交点的变化,根据交点的不同,从而确定,再不同的范围下得到不同的交点个数.此问注意分类讨论思想的使用,不要遗漏情况.属于较难习题.
试题解析:(1)解:由
故直线的斜率为,切点为,即
所以直线的方程为.                     3分
直线的图象相切,等价于方程组只有一解,
即方程有两个相等实根,
所以令,解得.             5分
(2)因为

,所以
所以函数的单调递增区间是.          8分
(3)令
,令,得,         10分
变化时,的变化情况如下表:



练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+aln(x+1)有两个极值点x1,x2,且x1<x2.
(1)求实数a的取值范围;
(2)当a=时,判断方程f(x)=-的实数根的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=a(x-5)2+6ln x,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3x2+6xa.
(1)对于任意实数xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线斜率为10.
(1)求实数的值;
(2)判断方程根的个数,并证明你的结论;
(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴当时,①若的图象与的图象相切于点,求的值;
上有解,求的范围;
⑵当时,若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

同步练习册答案