精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.

(Ⅰ)求证:B1F⊥EC1
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.

【答案】证明:(Ⅰ)分别取BC1 , BC中点D,G,连结ED,AG, ∵ABC﹣A1B1C1是直三棱柱,且底面是正三角形,
∴AG⊥面BCC1B1
又∵E,D都是中点,∴ED∥AG,则ED⊥面BCC1B1 , 可得ED⊥B1F,
已知BE⊥B1F,且BE∩ED=E,∴B1F⊥面BEC1 , 则B1F⊥EC1
(Ⅱ)解:由(Ⅰ)知B1F⊥面BEC1 , ∴B1F⊥BC1 , 则△B1C1F∽△BB1C1
,设BB1=a,则C1F= ,代入得a=
以O为原点,OE为x轴,OC为y轴,过O作平面ABC的垂线为z轴,建立如图坐标系O﹣xyz,

得C(0,2,0),B( ,0,0),E(0,﹣2, ),
C1(0,2,4 ),B1 ,0, ),F(0,2,2 ).
∵B1F⊥面BEC1 , ∴平面BEC1的一个法向量为
设平面BEC的一个法向量为
,取x= ,得y=3,z=

∴cos< >= = =-
∴二面角C1﹣BE﹣C的余弦值为
【解析】(Ⅰ)分别取BC1 , BC中点D,G,连结ED,AG,推导出AG⊥面BCC1B1 , 从而ED⊥B1F,BE⊥B1F,由此能证明B1F⊥面BEC1 , 进一步得到B1F⊥EC1;(Ⅱ)以O为原点,OE为x轴,OC为y轴,过O作平面ABC的垂线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角C1﹣BE﹣C的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣2)2+(y﹣1)2=1,点P为直线x+2y﹣9=0上一动点,过点P向圆C引两条切线PA,PB,其中A,B为切点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形ABEF所在的平面与△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE=

(1)求证:BC⊥平面ABEF;
(2)求平面ACF与平面BCE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,且.

1)证明:若,则是偶数;

2)设,且,求实数的值;

3)设,求证:;并求满足的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在双曲线 (a>0,b>0)的右支上,其左、右焦点分别为F1、F2 , 直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2 , 则该双曲线的渐近线的斜率为(
A.±
B.±
C.±
D.±

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量(个)

频数

频率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D= ,给出下列四个命题:
P1(x,y)∈D,x+y+1≥0;
P2(x,y)∈D,2x﹣y+2≤0;
P3(x,y)∈D, ≤﹣4;
P4(x,y)∈D,x2+y2≤2.
其中真命题的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.
(1)证明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)Sn为数列{an}的前n项和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案