ÉèÕýÈý½ÇÐÎA1B1C1±ß³¤Îªa£¬·Ö±ðÈ¡B1C1£¬C1A1£¬A1B1µÄÖеãA2£¬B2£¬C2£¬¼Ça1ÊÇÕýÈý½ÇÐÎA1B1C1³ýÈ¥¡÷A2B2C2ºóʣϵÄÈý¸öÄÚÇÐÔ²Ãæ»ýÖ®ºÍ£¬ÒÀ´ËÀàÍÆ£º¼ÇanÊÇ¡÷AnBnCn³ýÈ¥¡÷An+1Bn+1Cn+1ºóʣϵÄÈý¸öÈý½ÇÐÎÄÚÇÐÔ²Ãæ»ýÖ®ºÍ£¬´Ó¶øµÃµ½ÊýÁÐ{an}£¬ÉèÕâ¸öÊýÁÐ{an}µÄÇ°nÏîºÍSn£®
£¨1£©Çóan ºÍa1£»
£¨2£©ÇóSn£¬²¢Ö¤Ã÷Sn£¼
¦Ð¦Á2
12
£®
¿¼µã£ºÊýÁеÄÇóºÍ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÕýÈý½ÇÐΡ÷A1B2C2µÄÄÚÇÐÔ²°ë¾¶Îªr=
1
3
(
1
2
a)2-(
1
4
a)2
¡Á
1
3
=
3
12
a
£¬´Ó¶øa1=¦Ð¡Á(
3
12
a)2¡Á3
=
9¦Ða2
144
£¬ÓÉ¡÷A2B2C2Óë¡÷A1B1C1ÏàËÆ£¬²¢ÇÒÏàËƱÈÊÇ1£º2£¬ÔòÃæ»ýµÄ±ÈÊÇ1£º4£¬ÒÀ´ËÀàÍÆ¡÷AnBnCnÓë¡÷An-1Bn-1Cn-1µÄÃæ»ýµÄ±ÈÊÇ1£º4£¬´Ó¶øÇó³öan=
9¦Ða2
144
¡Á£¨
1
4
£©n-1£®
£¨2£©ÓÉSn=a1+a2+a3+¡­+an=
9¦Ða2
144
[1+
1
4
+(
1
4
)2+¡­+(
1
4
)n-1
]£¬ÀûÓõȱÈÊýÁÐÇ°nÏîºÍ¹«Ê½ÄÜÇó³öSn£¬²¢ÄÜÖ¤Ã÷Sn£¼
¦Ð¦Á2
12
£®
½â´ð£º ½â£º£¨1£©¡ßÕýÈý½ÇÐΡ÷A1B2C2µÄ±ß³¤Îª
1
2
a
£¬
ÄÚÇÐÔ²°ë¾¶Îªr=
1
3
(
1
2
a)2-(
1
4
a)2
¡Á
1
3
=
3
12
a
£¬
¡àa1=¦Ð¡Á(
3
12
a)2¡Á3
=
9¦Ða2
144
£¬
¡ß¡÷A2B2C2Óë¡÷A1B1C1ÏàËÆ£¬²¢ÇÒÏàËƱÈÊÇ1£º2£¬
ÔòÃæ»ýµÄ±ÈÊÇ1£º4£¬¡àa2=
9¦Ða2
144
¡Á
1
4
£¬
¡ßÕý¡÷A3B3C3ÓëÕý¡÷A2B2C2µÄÃæ»ýµÄ±ÈÒ²ÊÇ1£º4£¬¡àa3=
9¦Ða2
144
¡Á£¨
1
4
£©2£¬
ÒÀ´ËÀàÍÆ¡÷AnBnCnÓë¡÷An-1Bn-1Cn-1µÄÃæ»ýµÄ±ÈÊÇ1£º4£¬
¡àan=
9¦Ða2
144
¡Á£¨
1
4
£©n-1£®
£¨2£©Sn=a1+a2+a3+¡­+an
=
9¦Ða2
144
[1+
1
4
+(
1
4
)2+¡­+(
1
4
)n-1
]
=
9¦Ða2
144
¡Á
1-(
1
4
)n
1-
1
4

=
¦Ða2
12
£¨1-
1
4n
£©£®
¡ß1-
1
4n
£¼1£¬¡àSn£¼
¦Ð¦Á2
12
£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÊ×ÏîºÍͨÏʽµÄÇ󷨣¬¿¼²éÇ°nÏîºÍµÄÇ󷨣¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬½âÌâʱҪעÒâÈý½ÇÐÎÃæ»ý¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2+1µÄͼÏóÔÚµãA£¨x1£¬f£¨x1£©£©ÓëµãB£¨x2£¬f£¨x2£©£©´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬²¢½»ÓÚµãP£¬ÔòµãPµÄ×ø±ê¿ÉÄÜÊÇ£¨¡¡¡¡£©
A¡¢£¨
3
4
£¬2£©
B¡¢£¨0£¬
1
4
£©
C¡¢£¨1£¬3£©
D¡¢£¨1£¬
3
4
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÉÃݺ¯Êýy=x
1
2
ºÍÃݺ¯Êýy=x3ͼÏóΧ³ÉµÄ·â±ÕͼÐÎÃæ»ýΪ£¨¡¡¡¡£©
A¡¢
1
12
B¡¢
1
4
C¡¢
1
3
D¡¢
5
12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijͬѧÓá°Îåµã·¨¡±»­º¯Êýf£¨x£©=Asin£¨¦Øx+ϕ£©+k£¨A£¾0£¬¦Ø£¾0£¬|ϕ|£¼
¦Ð
2
£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó£¬ÁÐ±í²¢ÌîÈëÊý¾ÝµÃµ½ÏÂ±í£º
xx1
¦Ð
6
x2
2¦Ð
3
x3
¦Øx+ϕ0
¦Ð
2
¦Ð
3¦Ð
2
2¦Ð
f£¨x£©y13y2-1y3
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èý½ÇÐÎABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬Èôf£¨B£©=2£¬b=4£¬acos2
C
2
+ccos2
A
2
=6£¬ÇóÈý½ÇÐÎABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬a1=3£¬ÏÖ½«ÊýÁÐ{an}µÄ¸÷ÏîÒÀ´Î·ÅÈëÈçͼ±í¸ñÖУ¬ÆäÖеÚ1ÐÐ1ÏµÚ2ÐÐ2Ï¡­£¬µÚnÐÐ2n-1Ï¼ÇµÚnÐи÷ÏîµÄºÍΪTn£¬ÇÒT1£¬T2£¬T3³ÉµÈ±ÈÊýÁУ®ÊýÁÐ{an}µÄͨÏʽÊÇ£¨¡¡¡¡£©
A¡¢an=2n+1
B¡¢an=3n
C¡¢an=4n-1
D¡¢an=2n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA£¨3£¬5£©£¬B£¨6£¬9£©£¬ÇÒ|
AM
|=3|
MB
|£¬MÊÇÖ±ÏßABÉÏÒ»µã£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô£¨x+1£©n£¨n£¾3ÇÒn¡ÊN£©Õ¹¿ªÊ½ÖеÚrÏîµÄϵÊýΪar£¬ÇÒ9a1£¬2an£¬a3³ÉµÈ²îÊýÁУ¬Ôòn=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}Ϊ¹«±È²»Îª1µÄµÈ±ÈÊýÁУ¬a4=16£¬ÆäÇ°nÏîºÍΪSn£¬ÇÒ5S1¡¢2S2¡¢S3³ÉµÈ²îÊýÁУ®
£¨l£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=
1
log2anlog2an+1
£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®ÊÇ·ñ´æÔÚÕýÕûÊýk£¬Ê¹µÃ¶ÔÓÚÈÎÒân¡ÊN*²»µÈʽTn£¾£¨
2
3
£©kºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ökµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªe=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=ln£¨x+1£©-x+
x2
2
ÔÚ[0£¬+¡Þ£©ÉϵÄ×îСֵ£»
£¨¢ò£©±È½Ïln2ºÍ
13
20
µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸