精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦点为,过的直线交两点,过作与轴垂直的直线交直线于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,直线过定点.

【答案】(Ⅰ);(Ⅱ)详见解析.

【解析】

(Ⅰ)根据椭圆定义和线段长度关系可知轴上,由此求得,代入椭圆方程即可求得,进而得到椭圆方程;

(Ⅱ)将直线代入椭圆方程可得韦达定理的形式,从而得到,从而化简得到直线的斜率,得到方程为,从而得到定点.

(Ⅰ)设椭圆方程为,其中

时,不妨设,则

,由椭圆定义得:

故此时点轴上,不妨设,则

代入椭圆方程,解得:

故所求椭圆方程为

(Ⅱ)直线过定点,证明如下:

设直线方程为:

代入椭圆中得:,即

由题设知:,直线斜率:

直线方程为,化简得:,故直线恒过

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线与圆相交于两点,的面积达到最大时,________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其离心率为,过坐标原点作两条互相垂直的射线与椭圆分别相交于两点.

1)求椭圆的方程;

2)是否存在圆心在原点的定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,它的体积是底面△ABC中,∠BAC=90°,AB=4AC=3在底面的射影是D,且DBC的中点.

(1)求侧棱与底面ABC所成角的大小;

(2)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

(Ⅰ)求直方图中的值,并由频率分布直方图估计该校教职工一天步行数的中位数;

(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;

(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,轴上关于原点对称的两定点,点满足,点的轨迹为曲线

1)求的方程;

2)过的直线与交于点,线段的中点为的中垂线分别与轴、轴交于点,问是否成立?若成立,求出直线的方程;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)若,求函数的极值和单调区间;

II)若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

查看答案和解析>>

同步练习册答案