【题目】已知函数f(x)= .
(1)求函数f(x)的单调区间;
(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为﹣3,求m的值;
(3)若x≥1时,有不等式f(x)≥ 恒成立,求实数k的取值范围.
【答案】
(1)解:易知f(x)定义域为(0,+∞), ,令f'(x)=0,得x=1.
当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数
(2)解:∵g(x)=1+lnx+mx, ,x∈(0,e],
①若m≥0,则g'(x)≥0,从而g(x)在(0,e]上是增函数,∴g(x)max=g(e)=me+2≥0,不合题意.
②若m<0,则由g'(x)>0,即 ,若 ,g(x)在(0,e]上是增函数,
由①知不合题意.
由g'(x)<0,即 .
从而g(x)在 上是增函数,在 为减函数,
∴ ,令ln( )=﹣3,所以m=﹣e3,
∵ ,∴所求的m=﹣e3
(3)解:∵x≥1时, 恒成立,∴ ,
令 ,
∴ 恒大于0,
∴h(x)在[1,+∞)为增函数,
∴h(x)min=h(1)=2,∴k≤2
【解析】(1)求出函数的定义域,函数的导数,求出极值点,判断导函数符号,然后求解单调区间.(2)求出 ,x∈(0,e],通过①若m≥0,②若m<0,判断函数的单调性,求解函数的最值,然后求m.(3)利用x≥1时, 恒成立,分离变量,构造函数 ,利用函数的导数,求解函数的最值,推出结果即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. “若x>1,则2x>1”的否命题为真命题
B. “若cosβ=1,则sinβ=0”的逆命题是真命题
C. “若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题
D. 命题“若x>1,则x>a”的逆命题为真命题,则a>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).
(1)求椭圆的标准方程;
(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以长方体的八个顶点中的两点为起点和终点的向量中.
(1)单位向量共有多少个?
(2)试写出模为的所有向量.
(3)试写出与相等的所有向量.
(4)试写出的相反向量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表:
则下列结论中正确的是 ( )
A. 甲生产的产品质量比乙生产的产品质量好一些
B. 乙生产的产品质量比甲生产的产品质量好一些
C. 两人生产的产品质量一样好
D. 无法判断谁生产的产品质量好一些
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A﹣BM﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.
(1)求A;
(2)若△ABC的面积S=c2,求sin C的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com