精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)求函数f(x)的单调区间;
(2)若g(x)=xf(x)+mx在区间(0,e]上的最大值为﹣3,求m的值;
(3)若x≥1时,有不等式f(x)≥ 恒成立,求实数k的取值范围.

【答案】
(1)解:易知f(x)定义域为(0,+∞), ,令f'(x)=0,得x=1.

当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.

∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数


(2)解:∵g(x)=1+lnx+mx, ,x∈(0,e],

①若m≥0,则g'(x)≥0,从而g(x)在(0,e]上是增函数,∴g(x)max=g(e)=me+2≥0,不合题意.

②若m<0,则由g'(x)>0,即 ,若 ,g(x)在(0,e]上是增函数,

由①知不合题意.

由g'(x)<0,即

从而g(x)在 上是增函数,在 为减函数,

,令ln( )=﹣3,所以m=﹣e3

,∴所求的m=﹣e3


(3)解:∵x≥1时, 恒成立,∴

恒大于0,

∴h(x)在[1,+∞)为增函数,

∴h(x)min=h(1)=2,∴k≤2


【解析】(1)求出函数的定义域,函数的导数,求出极值点,判断导函数符号,然后求解单调区间.(2)求出 ,x∈(0,e],通过①若m≥0,②若m<0,判断函数的单调性,求解函数的最值,然后求m.(3)利用x≥1时, 恒成立,分离变量,构造函数 ,利用函数的导数,求解函数的最值,推出结果即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.

(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(  )

A. x>1,则2x>1”的否命题为真命题

B. cosβ=1,则sinβ=0”的逆命题是真命题

C. 若平面向量ab共线,则ab方向相同的逆否命题为假命题

D. 命题x>1,则xa的逆命题为真命题,则a>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an= ,n∈N*
(1)求数列{ }的前n项和Sn
(2)设bn=anan+1 , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且以原点为圆心,椭圆的焦距为直径的圆与直线相切(为常数).

(1)求椭圆的标准方程;

(2)如图,若椭圆的左、右焦点分别为,过作直线与椭圆分别交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以长方体的八个顶点中的两点为起点和终点的向量中.

(1)单位向量共有多少个?

(2)试写出模为的所有向量.

(3)试写出与相等的所有向量.

(4)试写出的相反向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表:

则下列结论中正确的是 ( )

A. 甲生产的产品质量比乙生产的产品质量好一些

B. 乙生产的产品质量比甲生产的产品质量好一些

C. 两人生产的产品质量一样好

D. 无法判断谁生产的产品质量好一些

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:

(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A﹣BM﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

同步练习册答案