精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′﹣DEF的体积最大值为 a3
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′﹣DE﹣F大小的范围是[0, ].
其中正确的命题是(写出所有正确命题的编号)

【答案】①②③④
【解析】解:①由已知可得四边形ADEF是菱形,则DE⊥GA′,DE⊥GF, ∴DE⊥平面A′FG,∴平面A′FG⊥平面ABC,①正确;
②由三角形中位线定理可得BC∥DE,∴BC∥平面A′DE,∴②正确;
③当面A′DE⊥面ABC时,三棱锥A′﹣DEF的体积达到最大,
最大值为 = ,③正确;
④由平面A′FG⊥平面ABC,可知点A′在面ABC上的射影在线段AF上,∴④正确;
⑤在旋转过程中二面角A′﹣DE﹣F大小的范围是[0,π],∴⑤不正确.
所以答案是:①②③④.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系,以及对直线与平面平行的判定的理解,了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上,离心率为 的椭圆过点( ).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,bcosC=(2a﹣c)cosB.
(1)求B;
(2)若b= ,且a+c=4,求SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是 . (填写所有正确的序号) ①若sinx+siny= ,则siny﹣cos2x的最大值为
②函数y=sin(2x+ )的单调增区间是[kπ﹣ ,kπ+ ],k∈Z;
③函数f(x)= 是奇函数;
④函数y=tan 的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为正实数,若函数f(x)=ax3+bx+ab﹣1是奇函数,则f(2)的最小值是(
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数在区间(﹣∞,0)上是增函数的是(
A.f(x)=x2﹣4x
B.g(x)=3x+1
C.h(x)=3x
D.t(x)=tanx

查看答案和解析>>

同步练习册答案