(08年正定中学一模文)(12分)
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值
(1) 求a、b的值与函数f(x)的单调区间
(2) 若对xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。
解析:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得
a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
x | (-¥,-) | - | (-,1) | 1 | (1,+¥) |
f¢(x) | + | 0 | - | 0 | + |
f(x) | | 极大值 | ¯ | 极小值 | |
所以函数f(x)的递增区间是(-¥,-)与(1,+¥)
递减区间是(-,1)
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,当x=-时,f(x)=+c
为极大值,而f(2)=2+c,则f(2)=2+c为最大值。
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c
解得c<-1或c>2
科目:高中数学 来源: 题型:
(08年正定中学一模理)(12分) 2008年北京奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队获得每枚金牌的概率均为,中国乒乓球女队一枚金牌的概率均为
(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;
(2)记中国乒乓球队获得金牌的数为,按此估计的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年正定中学一模理) (12分)
设数列{an}的各项都是正数,且对任意n∈N+,都有,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若(为非零常数,n∈N+),问是否存在整数,使得对任意 n∈N+,都有bn+1>bn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com