【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2 .
(1)求证:平面ABC⊥平面ACDF;
(2)求平面AEF与平面ACE所成的锐二面角的余弦值.
【答案】
(1)证明:设O是AC中点,连结OF、OB、FC,
在△ABC中,AB=BC,∴OB⊥AC,
∵四边形ACDF是菱形,∠FAC=60°,
∴△FAC是等边三角形,∴OF⊥AC,
∴∠FOB是二面角F﹣AC﹣B的平面角,
在Rt△FAO中,AF=2 ,AO= AC= AF= ,
∴OF= = ,
又∵BF= ,∴OF2+OB2=BF2,
∴∠FOB=90°,
∴平面ABC⊥平面ACDF.
(2)解:由(1)知OB、OC、OF两两垂直,以O为原点,OB为x轴,OC为y轴,OF为z轴,
建立空间直角坐标系,
则A(0,﹣ ,0),B( ,0,0),C(0, ,0),F(0,0,3),
=(0, ,3), =(0,2 ,0),
∵AB∥DE,AF∥CD,又AB平面CDE,AF平面CDE,
DE平面CDE,CD平面CDE,
∴AB∥平面CDE,AF∥平面CDE,
又AB∩AF=A,∴平面ABF∥平面CDE,
∵EF∥BC,∴B、C、E、F四点共面,
又平面ABF∩平面BCEF=BF,平面CDE∩平面BCEF=CE,
∴BF∥CE,∴四边形BCEF是平行四边形,
∴ = =(﹣ ,0),
∴ =(﹣ ,3),
设平面AEF的法向量 =(x,y,z),
则 ,取x= ,得 =( ),
设平面ACE的法向量 =(a,b,c),
则 ,取a= ,得 =( ),
设平面AEF与平面ACE所成的锐二面角为θ,
则cosθ= = .
∴平面AEF与平面ACE所成的锐二面角的余弦值为 .
【解析】(1)设O是AC中点,连结OF、OB、FC,推导出OB⊥AC,OF⊥AC,则∠FOB是二面角F﹣AC﹣B的平面角,由此能证明平面ABC⊥平面ACDF.(2)以O为原点,OB为x轴,OC为y轴,OF为z轴,建立空间直角坐标系,利用向量法能求出平面AEF与平面ACE所成的锐二面角的余弦值.
【考点精析】利用平面与平面垂直的判定对题目进行判断即可得到答案,需要熟知一个平面过另一个平面的垂线,则这两个平面垂直.
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数). (Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均不为0的等差数列{an}前n项和为Sn , 满足S4=2a5 , a1a2=a4 , 数列{bn}满足bn+1=2bn , b1=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax﹣1,g(x)=lnx﹣ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,则实数a的取值范围是( )
A.
B.(ln2,e﹣1)
C.[1,e﹣1)
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+ 中“”即代表无数次重复,但原式却是个定值,它可以通过方程1+ =x求得x= .类比上述过程,则 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinx﹣xcosx(x≥0).
(1)求函数f(x)的图象在 处的切线方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求实数a的取值范围;
(3)设m=f(x)dx, ,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个圆心角为直角的扇形AOB 花草房,半径为1,点P 是花草房弧上一个动点,不含端点,现打算在扇形BOP 内种花,PQ⊥OA,垂足为Q,PQ 将扇形AOP 分成左右两部分,在PQ 左侧部分三角形POQ 为观赏区,在PQ 右侧部分种草,已知种花的单位面积的造价为3a,种草的单位面积的造价为2a,其中a 为正常数,设∠AOP=θ,种花的造价与种草的造价的和称为总造价,不计观赏区的造价,设总造价为f(θ)
(1)求f(θ)关于θ 的函数关系式;
(2)求当θ 为何值时,总造价最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在以点C为圆心,且与直线BD相切的圆内运动,设 (α,β∈R),则α+β的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com