精英家教网 > 高中数学 > 题目详情
平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于(  )
分析:如图,过F点作CC1的垂线,过E点作DD1的垂线,垂足分别为N,M.由于平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.得出四边形EFGH是平行四边形,从而有FG
.
.
EH,再结合△GFN≌△HEM,即可得出DH的长.
解答:解:如图,过F点作CC1的垂线,过E点作DD1的垂线,垂足分别为N,M.
由于平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.
∴四边形EFGH是平行四边形,
∴FG
.
.
EH,
又FN
.
.
EM,
∴△GFN≌△HEM,
∴GN=HM,而GN=CG-CN=CG-BF=5-4=1,
∴HM=1,
∴DH=DM+HM=AE+HM=3+1=4.
故选C.
点评:本小题主要考查棱柱的结构特征、三角形全等等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=2a,M、N分别是棱BB1,DD1的中点.
①求异面直线A1M与B1C所成的角的余弦值;
②若正四棱柱ABCD-A1B1C1D1的体积为V,三棱锥N-A1B1C1的体积为V1,求
V1V
的值.
③求平面A1MC1与平面B1NC1所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分别为B1B和A1D的中点.
(Ⅰ)求直线MN与平面ADD1A1所成角的大小;
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于


  1. A.
    6
  2. B.
    5
  3. C.
    4
  4. D.
    3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案