精英家教网 > 高中数学 > 题目详情
17.将单位圆经过伸缩变换:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲线C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1
(1)求实数λ,μ的值;
(2)以原点O 为极点,x 轴为极轴建立极坐标系,将曲线C 上任意一点到极点的距离ρ(ρ≥0)?表示为对应极角θ(0≤θ<2π)的函数,并探求θ为何值时,ρ取得最小值?

分析 (1)由题意可知实数λ,μ的值,
(2)求出极坐标方程,根据三角函数的性质即可求出最值.

解答 解:(1)由:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲线C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1,即为($\frac{x}{2}$)2+($\frac{y}{\sqrt{2}}$)2=1
∴$\left\{{\begin{array}{l}{λ=2}\\{μ=\sqrt{2}}\end{array}}\right.$,
(2)$ρ=\frac{2}{{\sqrt{{{cos}^2}θ+2{{sin}^2}θ}}}=\frac{2}{{\sqrt{1+{{sin}^2}θ}}}$,
故当$θ=\frac{π}{2}$时,ρmin=$\sqrt{2}$.

点评 本题主要考查伸缩变换,考查参数方程的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数y=ax3+1的图象与直线y=x相切,则a=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{16}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集中A={2,4,6},B={1,9,25,49,81,100},下面的对应关系f能构成A到B的映射的是(  )
A.f:x→(2x-1)2B.f:x→(2x-3)C.f:x→(2x-1)D.f:x→(2x-3)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在平行四边形ABCD中,∠ABD=90°,2AB2+BD2=4,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,那么两个三角形六个内角中的最大值为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y=ax2(a>0),过点P(0,1)的直线l交抛物线C于A、B两点.
(Ⅰ)若抛物线C的焦点为(0,$\frac{1}{4}$),求该抛物线的方程;
(Ⅱ)已知过点A、B分别作抛物线C的切线l1、l2,交于点M,以线段AB为直径的圆经过点M,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$f(x)=a•{log_2}({\sqrt{{x^2}+1}+x})+\frac{{b•\sqrt{4-{x^2}}}}{{|{x+3}|-3}}+e$(a,b为常数,e为自然对数的底),且f(lg(logπe))=π,则f(lg(lnπ))=2e-π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等比数列{an}的前n项和为Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列$\{\frac{1}{d_n}\}$的前n项和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数$z=\frac{{{{(1-i)}^2}}}{1+i}$(i为虚数单位),则复数z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步练习册答案