精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=log5(2x-m)+3的图象经过点(15,5).
(1)求函数的解析式;
(2)求函数的定义域.

分析 (1)将点(15,5)代入f(x)=log5(2x-m)+3,求出m值,可得函数的解析式;
(2)根据真数大于0,构造不等式,解得函数的定义域.

解答 解:(1)∵函数f(x)=log5(2x-m)+3的图象经过点(15,5).
∴log5(2×15-m)+3=5,
∴log5(2×15-m)=2,
∴2×15-m=25,
∴m=-10,
∴函数f(x)=log5(2x+10)+3
(2)由2x+10>0得:x>-5,
故函数f(x)=log5(2x+10)+3的定义域为{x|x>-5}

点评 本题考查的知识点是对数的运算性质,对数函数的定义域,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1},
命题q:在△ABC中,A>B是${cos^2}({\frac{A}{2}+\frac{π}{4}})<{cos^2}({\frac{B}{2}+\frac{π}{4}})$成立的必要不充分条件,
则 下列说法正确的是(  )
A.P真q假B.p∧q为真C.p∨q为假D.P假q真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},满足a2=2,a4=4.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+2}}}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数y=f(x)的图象与函数y=2x+2的图象关于直线y=-x对称,则f(-2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,A(1,0),B(0,1),则点集{P|$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$},|m|+|n|=1,m,n∈R}所表示区域的周长是(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在边长为a的正方形ABCD中,点E、F分别在边AD、CD上将,∠EBF=45°,求△EBF面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=log0.5(1-x)+log0.5(x+3)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)证明数列{an}是等差数列,并求其前n项和Sn
(2)设数列{bn}满足bn=$\sqrt{\frac{n}{{S}_{n}}}$,求证:b1+b2+…+bn<$\frac{2}{3}$$\sqrt{3n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将下列各数:$\frac{2}{3}$,log53,log${\;}_{\sqrt{3}}$2,(log${\;}_{\frac{1}{8}}$$\frac{1}{27}$)-1,log${\;}_{\frac{1}{2}}$6从小到大排列为$lo{g}_{\frac{1}{2}}6$<$(lo{g}_{\frac{1}{8}}\frac{1}{27})^{-1}$<$\frac{2}{3}$<log53<log${\;}_{\sqrt{3}}$2.

查看答案和解析>>

同步练习册答案