精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,既为偶函数,又在(0,+∞)上为增函数的是(  )

A. B. C. D.

【答案】C

【解析】

要判断函数是否为偶函数,只要检验f(-x)=f(x)是否成立即可;然后再根据函数单调性的定义进行判断即可.

A:,f(-x)=-x-为奇函数,不符合条件;

B:y=f(x)=2-x2,f(-x)=2-(-x)2=2-x2=f(x),为偶函数,但是在(0,+∞)上单调递减,不符合题意;

C:y=x2+log2|x|,f(-x)=(-x)2+log2|-x|=f(x)为偶函数,且x>0时,f(x)=x2+log2x在(0,+∞),上单调递增,符合题意;

D:y=2|x|-x2满足f(-x)=f(x),即为偶函数,但是在(0,+∞)不是单调递增,不符合题意.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)当时,方程恰有两个不同的实数根,求实数的取值范围;

(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=x3ax2bx+1的导数满足,其中常数abR.

(1)求曲线yfx)在点(1,f(1))处的切线方程;

(2)设,求函数gx)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.

(1)求展开式中的常数项;

(2)求展开式中所有整式项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.

(1)求展开式中的常数项;

(2)求展开式中所有整式项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述:

①化简的结果为﹣

②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;

③函数y=log3x+x2﹣2在定义域内只有一个零点;

④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.

其中正确的结论序号是_____

查看答案和解析>>

同步练习册答案