精英家教网 > 高中数学 > 题目详情

【题目】若不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

【答案】D
【解析】解:﹣a< 时,|2x﹣1|﹣|x+a|= ,x= 时,最小值为﹣ ﹣a,
∵不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,
∴﹣ ﹣a≥a,∴a≤﹣
∴﹣ <a≤﹣
﹣a= 时,|2x﹣1|﹣|x+a|=|x﹣ |≥﹣ ,成立;
﹣a> 时,同理可得x= 时,|2x﹣1|﹣|x+a|最小值为 +a,
∵不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,
+a≥a恒成立,∴a<﹣
综上所述a≤﹣
故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)设直线轴, 轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问5分,2小问7分

图,椭圆的左、右焦点分别为的直线交椭圆于两点,且

1求椭圆的标准方程

2求椭圆的离心率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈R,[x]表示不超过x的最大整数,若函数 有且仅有3个零点,则实数a的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为(
A.15°
B.30°
C.45°或75°
D.15°或75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+bx+c>0的解集为{x|﹣1<x<2},求不等式a(x2+1)+b(x﹣1)+c>2ax的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为 ,当 时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是(
A.
B.
C.[3,+∞)
D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】养正中学新校区内有一块以O为圆心,R(单位:米)为半径的半圆形荒地(如图),校总务处计划对其开发利用,其中弓形BCD区域(阴影部分)用于种植观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售。已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。

1)设(单位:弧度),用表示弓形BCD的面积

2)如果该校总务处邀请你规划这块土地。如何设计的大小才能使总利润最大?并求出该最大值

查看答案和解析>>

同步练习册答案