分析 (1)求出函数的导数,问题转化为b≥(x-x2)max,求出b的范围即可;
(2)求出b的值,解关于导函数的不等式,求出函数的单调区间,从而求出函数在[-1,2]的最大值,解关于c的不等式即可.
解答 解:(1)∵f(x)在(-∞,+∞)上是增函数,
∴f′(x)=x2-x+b≥0在R恒成立,
∴b≥(x-x2)max,x∈R,
而x∈R时,x-x2≤$\frac{1}{4}$,
∴b≥$\frac{1}{4}$;
(2)∵f(x)在x=1处取得极值,
∴f′(1)=1-1+b=0,解得:b=0,
∴f′(x)=x2-x,
令f′(x)>0,解得:x>1或x<0,
令f′(x)<0,解得:0<x<1,
故f(x)在[-1,0)递增,在(0,1)递减,在(1,2]递增,
故x=0时,f(x)极大值=c,
x=2时,f(x)=c+$\frac{2}{3}$,
∴x∈[-1,2]时,f(x)max=f(2)=c+$\frac{2}{3}$,
x∈[-1,2]时,f(x)<c2,
∴c2>f(x)max=c+$\frac{2}{3}$,
解得:c>$\frac{3+\sqrt{33}}{6}$或c<$\frac{3-\sqrt{33}}{6}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | $2+4\sqrt{2}+2\sqrt{3}$ | B. | $2+4\sqrt{2}+\sqrt{6}$ | C. | $2+4\sqrt{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)+g(x)是偶函数 | B. | f(x)•g(x)是偶函数 | C. | f(x)+g(x)是奇函数 | D. | f(x)•g(x)是奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,+∞) | B. | [-1,+∞) | C. | (-1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com