精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+bx+c
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.

分析 (1)求出函数的导数,问题转化为b≥(x-x2max,求出b的范围即可;
(2)求出b的值,解关于导函数的不等式,求出函数的单调区间,从而求出函数在[-1,2]的最大值,解关于c的不等式即可.

解答 解:(1)∵f(x)在(-∞,+∞)上是增函数,
∴f′(x)=x2-x+b≥0在R恒成立,
∴b≥(x-x2max,x∈R,
而x∈R时,x-x2≤$\frac{1}{4}$,
∴b≥$\frac{1}{4}$;
(2)∵f(x)在x=1处取得极值,
∴f′(1)=1-1+b=0,解得:b=0,
∴f′(x)=x2-x,
令f′(x)>0,解得:x>1或x<0,
令f′(x)<0,解得:0<x<1,
故f(x)在[-1,0)递增,在(0,1)递减,在(1,2]递增,
故x=0时,f(x)极大值=c,
x=2时,f(x)=c+$\frac{2}{3}$,
∴x∈[-1,2]时,f(x)max=f(2)=c+$\frac{2}{3}$,
x∈[-1,2]时,f(x)<c2
∴c2>f(x)max=c+$\frac{2}{3}$,
解得:c>$\frac{3+\sqrt{33}}{6}$或c<$\frac{3-\sqrt{33}}{6}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图1,一个多面体的正视图和侧视图是两个全等的等腰直角三角形且直角边长为2,俯视图是边长为2的正方形,则该多面体的表面积是(  )
A.$2+4\sqrt{2}+2\sqrt{3}$B.$2+4\sqrt{2}+\sqrt{6}$C.$2+4\sqrt{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ln|ax|(a≠0),g(x)=x-3+sinx,则(  )
A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.是否存在常数a,b,c使等式1•(n2-1)+2•(n2-22)+…+n•(n2-n2)=n2(an2-b)+c对一切n∈N*都成立?
并证明的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x3+3ax+2在区间[1,+∞)内是增函数,则实数a的取值范围是(  )
A.[1,+∞)B.[-1,+∞)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1、F2是其左、右焦点,A是其上顶点,且∠F1AF2=60°.
(1)求椭圆C的离心率;
(2)经过椭圆C的右焦点F2作倾斜角为45°的直线l,交椭圆C于M,N两点,且满足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a=sin(sin2013°),b=sin(cos2013°),c=cos(sin2013°),d=cos(cos2013°),则a、b、c、d从小到大的顺序是b<a<d<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足:a1=2,且a22=a1a5
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知平面直角坐标系xoy内两个定点A(1,0)、B(4,0),满足PB=2PA的点P(x,y)形成的曲线记为Γ.
(1)求曲线Γ的方程;
(2)过点B的直线l与曲线Γ相交于C、D两点,当△COD的面积最大时,求直线l的方程(O为坐标原点);
(3)设曲线Γ分别交x、y轴的正半轴于M、N两点,点Q是曲线Γ位于第三象限内一段上的任意一点,连结QN交x轴于点E、连结QM交y轴于F.求证四边形MNEF的面积为定值.

查看答案和解析>>

同步练习册答案