精英家教网 > 高中数学 > 题目详情
如图ABCD是一个直角梯形,其中AB∥DC,AB⊥BC,CD=2BC=2AB=4,过点A作CD的垂线AE,垂足为点E,现将△ADE折起,使二面角D-AE-C的大小是120°.
(1)求证:平面BCD⊥平面CED;
(2)求二面角A-CD-E的大小.
精英家教网精英家教网
分析:(1)先证AE⊥平面CED,再利用BC∥AE?BC⊥平面CED?平面BCD⊥平面CED;
(2)先由已知知道∠CED=120°.再过点E作EF垂直CD且交于点F,则∠AFE是二面角A-CD-E的平面角,然后在△AFE中求出∠AFE即可.
解答:精英家教网解:(1)证明:因为AE⊥CE,AE⊥DE,CE∩DE=E,所以AE⊥平面CED.
又因为BC∥AE,
∴BC⊥平面CED,BC?面BCD,
∴平面BCD⊥平面CED;(6分)
(2)∵AE⊥CE,AE⊥DE,
∴∠CED为二面角D-AE-C的平面角,
∴∠CED=120°.
过点E作EF垂直CD且交于点F,
连接AF,∵AE⊥平面CED,∴AF在面CED上的射影为EF,得到AF⊥CD,
所以∠AFE是二面角A-CD-E的平面角,(9分)
EF=2sin30°=1,tan∠AFE=
AF
EF
=2
,(11分)
二面角A-CD-E大小是arctan2.(12分)
点评:本题考查平面和平面垂直的判定和性质.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD和ABEF都是边长为1的正方形,AM=FN,现将两个正方形沿AB折成一个直二面角,O∈AB,平面MON∥平面CBE.
精英家教网
(1)求角MON大小;
(2)设AO=x,当x为何值时,三棱锥A-MON的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都三模)如图1,在平行四边形ABCD中,AB=1,BD=
2
,∠ABD=90°,E是BD上的一个动点.现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二第七学段考试理科数学试卷(解析版) 题型:解答题

(本小题14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱(底面是正方形的直棱柱)形状的包装盒,E、F在AB上是被切去的等腰直角三角形HEF斜边的两个端点,设AE=FB=xcm.

(1)请用分别表示|GE|、|EH|的长

(2)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?

H

 
(3)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

 

查看答案和解析>>

同步练习册答案