精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小正周期为.

(1)求函数的单调增区间;

(2)将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若上至少含有10个零点,求的最小值.

【答案】(1);(2).

【解析】试题分析:(1)化简得,由函数的最小正周期可得,由正弦函数的性质可得的单调增区间;(2)由图象的变换可得的解析式,因为上恰好有两个零点,所以满足题意的的最小值为.

试题解析:由题意得

由最小正周期为,得,所以.

函数的单调增区间为,整理得

所以函数的单调增区间是.

2)将函数的图象向左平移个单位,再向上平移1个单位,

得到的图象,所以.

,得.

所以在上恰好有两个零点,若上有10个零点,

不小于第10个零点的横坐标即可,即的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面侧面,且

1)求证:

2)若直线与平面所成角的正弦值为,求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场预计全年分批购入每台价值2000元的电视机共3600台,每批购入的台数相同,且每批均须付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费43600元.现在全年只有24000元可用于支付运费和保管费,请问能否恰当安排每批进货的数量,使这24000元的资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列4个函数:① ;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在区间 上增函数且以π为周期的函数是(把所有符合条件的函数序列号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:(ax﹣1)(x﹣1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中, , ,

,平面平面.

(1) 证明: 直线平面

(2) 已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a﹣ (a∈R).
(1)请你确定a的值,使f(x)为奇函数;
(2)用单调性定义证明,无论a为何值,f(x)为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 (t为参数), (θ为参数),
(1)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为 ,Q为C2上的动点,求PQ中点M到直线 (t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

同步练习册答案