精英家教网 > 高中数学 > 题目详情
19.如图,在矩形ABCD中,AB=3,BC=$\sqrt{3}$,过点A向BAD所在区域等可能任作一条射线AP,则事件“射线AP与线段BC有公共点”发生的概率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 根据条件求出射线AP与线段BC有公共点时,对应角∠BAP的取值范围,利用几何概型的概率公式进行求解即可.

解答 解:∵“射线AP与线段BC有公共点”,
∴当P在C处满足条件,
∵AB=3,BC=$\sqrt{3}$,
∴tan∠BAP=$\frac{BC}{AB}=\frac{\sqrt{3}}{3}$,
即∠BAC=30°,
即当0°≤∠BAP≤30°时,射线AP与线段BC有公共点,
则对应的概率P=$\frac{30°-0°}{90°-0°}=\frac{1}{3}$,
故选:B.

点评 本题主要考查几何概型的应用,根据条件建立角度之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若某人每次射击击中目标的概率均为$\frac{3}{5}$,此人连续射击三次,至少有两次击中目标的概率为(  )
A.$\frac{81}{125}$B.$\frac{54}{125}$C.$\frac{36}{125}$D.$\frac{27}{125}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ln|x-1|+lg$\frac{x+1}{3-x}$的定义域是{x|-1<x<1或1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,∠ABC=60°.
(Ⅰ) 求证:直线EA⊥平面PAB;
(Ⅱ) 求直线AE与平面PCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=2py(p>0)以椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的上顶点S为焦点,抛物线的过焦点且垂直于其对称轴的弦与椭圆长轴的长度相等.
(1)求出抛物线与椭圆的方程;
(2)设抛物线与椭圆交于A,B,在抛物线弧$\widehat{AB}$上的任一点M处作抛物线的切线l.
①求证:S关于切线l的对称点S′总在抛物线的准线上;
②若T(不是S)是椭圆上的点,且点T到切线l的距离与点S到切线l的距离相等,试问这样的点T有几个?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.棱长为2的正四面体ABCD在空间直角坐标系中移动,但保持点A、B分别在x轴、y轴上移动,则棱CD的中点E到坐标原点O的最远距离为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.建立数学模型一般都要经历下列过程:从实际情境中提出问题,建立数学模型,通过计算或推导得到结果,结合实际情况进行检验.如果合乎实际,就得到可以应用的结果,否则重新审视问题的提出、建模、计算和推导得到结果的过程,直到得到合乎实际的结果为止.请设计一个流程图表示这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=2sin(3x+$\frac{π}{3}$)的周期、单调区间、最大值与最小值,并分别写出取到最大值与最小值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α为第二象限角,且sin(α+π)=-$\frac{4}{5}$,则tan2α=(  )
A.$\frac{24}{7}$B.$\frac{4}{5}$C.-$\frac{24}{7}$D.-$\frac{8}{3}$

查看答案和解析>>

同步练习册答案