精英家教网 > 高中数学 > 题目详情
1.已知双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,A、B分别为其左、右顶点,P是双曲线右支上位于x轴上方的动点,则kPA+kPB的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[$\frac{5}{2}$,+∞)D.(1,+∞)

分析 根据双曲线的方程求出A、B点的坐标,设点P(x0,y0),得到kPA+kPB=$\frac{{y}_{0}}{{x}_{0}+2}$+$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{x}_{0}}{2{y}_{0}}$=m,根据p的位置即可判断m的范围,即斜率的范围.

解答 解:双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,A、B分别为其左、右顶点(-2,0),(2,0),设点P(x0,y0),
根据点P是双曲线左支上位于x轴上方的点,则$\frac{1}{4}$x02-y02=1,则x02-4=4y02
∴kPA+kPB=$\frac{{y}_{0}}{{x}_{0}+2}$+$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}(2{x}_{0})}{{{x}_{0}}^{2}-4}$=$\frac{{x}_{0}}{2{y}_{0}}$=m,
则x0=2my0
∴(m-1)y02=1,
∴y02=$\frac{1}{m-1}$>0,
∴m>1,
故选:D

点评 本题借助于双曲线中的一条动直线的斜率取值范围问题,着重考查了双曲线的简单性质和函数的值域与最值等知识点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图1所示,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴交与点C(0,-3).
(1)求抛物线的解析式;
(2)在BC下方的抛物线上是否存在点E,使△EBC的面积最大,如果存在,请求出最大面积及点E的坐标;如果不存在,请说明理由.
(3)如图2所示,过点C作CP∥AB交抛物线与点P,在抛物线上是否存在点M,将线段PM绕点P旋转90°后,点M恰好落在x轴上的点M1处,如果存在,请求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${∫}_{0}^{\frac{π}{2}}$(1-2sin2$\frac{x}{2}$)dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)当m=3时,求集合A∪B,(∁RA)∩B;
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C中心在原点,长轴在x轴上,F1、F2为其左、右两焦点,点P为椭圆C上一点,PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)若倾斜角为45°的一动直线l与椭圆C相交于A、B两点,求△AOB(O为坐标原点)面积的最大值及相应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设α是第一象限的角,作α的正弦线、余弦线和正切线,并证明下列各式:
(1)sin2α+cos2α=1;
(2)tanα=$\frac{sinα}{cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式(x+1)(x-2)>4的解集是{x|x<-2或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校为庆祝2012年国庆节,安排了一场文艺演出,其中有3个舞蹈节目和4个小品节目,按下面要求安排节目单,有多少种方法:
(1)3个舞蹈节目互不相邻;
(2)3个舞蹈节目和4个小品节目彼此相间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程x2+(2m+1)x+1=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案