精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.
(1)当a=0时,f(x)在(0,+∞)单调递增;当a<0时,f(x)在单调递增,在单调递减.(2)(-∞,0)
(1)f(x)的定义域是(0,+∞),f′(x)=a (x>0)
①当a=0时,f′(x)>0,∴f(x)在(0,+∞)单调递增;
②当a<0时,由f′(x)=0,解得x=-
则当x时,f′(x)>0,∴f(x)单调递增,
x时,f′(x)<0,f(x)单调递减,综上所述:当a=0时,f(x)在(0,+∞)单调递增;当a<0时,f(x)在单调递增,在单调递减.
(2)由题意:ex<有解,即ex<xm有解,因此只需m<x-exx∈(0,+∞)有解即可,设h(x)=x-exh′(x)=1-ex=1-ex,因为:≥2>1,且x∈(0,+∞)时ex>1,所以:1-ex<0,即h′(x)<0.
h(x)在[0,+∞)单调递减,
h(x)<h(0)=0,∴m<0.
故实数m的取值范围是(-∞,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数的单调区间和极值;
(Ⅱ)设函数图象上任意一点的切线的斜率为,当的最小值为1时,求此时切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足f(1)=1且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域为,部分对应值如下表, 的导函数的图象如图所示. 下列关于的命题:

-1
0
4
5

1
2
2
1

①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数个零点;
⑤函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足:恒成立,若,则的大小关系为 ( )
A.B.
C.D.的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P是函数图象上任意一点,且在点P处切线的倾斜角为,则的最小值是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案