精英家教网 > 高中数学 > 题目详情

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

【答案】(1); (2)见解析.

【解析】

(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可。(II)分切线斜率存在与不存在讨论,设出M,N的坐标设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程利用根与系数关系,表示结合三角形相似证明结论,即可。

(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,

∴椭圆的方程可设为.

易求得,∴点在椭圆上,∴

解得,∴椭圆的方程为.

(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,

,∴.

当过点且与圆相切的切线斜率存在时,可设切线的方程为

,即.

联立直线和椭圆的方程得

,得.

.

综上所述,圆上任意一点处的切线交椭圆于点,都有.

中,由相似得,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某物流公司欲将一批海产品从A地运往B地,现有汽车、火车、飞机三种运输工具可供选择,这三种工具的主要参考数据如下:

运输工具

途中速度(

途中费用(元/

装卸时间(

装卸费用(元/

汽车

50

80

2

200

火车

100

40

3

400

飞机

200

200

3

800

若这批海产品在运输过程中的损耗为300/,问采用哪种运输方式比较好,即运输过程中的费用与损耗之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立的回归方程;

(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

84

83

80

75

68

已知

1)求出的值;

2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;可供选择的数据:

3)用表示用(2)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数在一个周期内的图象如图所示,A为图象的最高点,BC的图象与x轴的交点,且为等边三角形.将函数的图象上各点的横坐标变为原来的倍后,再向右平移个单位,得到函数的图象.

1)求函数的解析式;

2)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“陪伴数列”.

(Ⅰ)写出数列的“陪伴数列”

(Ⅱ)若的“陪伴数列”是.试证明: 成等差数列.

(Ⅲ)若为偶数,且的“陪伴数列”是,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点F1-20)和F220)的距离之和为

1)求动点M轨迹C的方程;

2)设N02),过点P-1-2)作直线l,交椭圆C于不同于NAB两点,直线NANB的斜率分别为k1k2,问k1+k2是否为定值?若是的求出这个值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的左右焦点分别 ,过作垂直于轴的直线交椭圆于两点,满足.

(1)求椭圆的离心率.

(2)是椭圆短轴的两个端点,设点是椭圆上一点(异于椭圆的顶点),直线分别与轴相交于两点,为坐标原点,若,求椭圆的方程.

查看答案和解析>>

同步练习册答案