精英家教网 > 高中数学 > 题目详情

【题目】某球员是当今国内最好的球员之一,在赛季常规赛中,场均得分达分。分球和分球命中率分别为,罚球命中率为.一场比赛分为一、二、三、四节,在某场比赛中该球员每节出手投分的次数分别是,每节出手投三分的次数分别是,罚球次数分别是(罚球一次命中记分)。

(1)估计该球员在这场比赛中的得分(精确到整数);

(2)求该球员这场比赛四节都能投中三分球的概率;

(3)设该球员这场比赛中最后一节的得分为,求的分布列和数学期望。

【答案】1分;(2;(3)见解析.

【解析】

1)分别估算分得分、分得分和罚球得分,加和得到结果;(2)分别计算各节能投中分球的概率,相乘得到所求概率;(3)确定所有可能取值为,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求得期望.

1)估计该球员分得分为:分;

分得分为:分;

罚球得分为:

估计该球员在这场比赛中的得分为:

(2)第一节和第三节能投中分球的概率为:

第二节和第四节能投中分球的概率为:

四节都能投中分球的概率为:

(3)由题意可知,所有可能的取值为:

的分布列为:

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆交于的两点,且轴,若为椭圆上异于的动点且,则该椭圆的离心率为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱,侧面 侧面,,,,为棱的中点,的中点.

(1) 求证:平面

(2) ,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,若直线的极坐标方程为,曲线的参数方程是为参数).

1)求直线的直角坐标方程和曲线的普通方程;

2)设点的直角坐标为,过的直线与直线平行,且与曲线交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

温差

9

10

11

8

12

发芽数(颗)

38

30

24

41

17

利用散点图,可知线性相关。

(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;

(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.

(公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

同步练习册答案