精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆柱内有一个三棱锥为圆柱的一条母线,为下底面圆的直径,.

1)在圆柱的上底面圆内是否存在一点,使得平面?证明你的结论.

2)设点为棱的中点,,求平面与平面所成锐二面角的余弦值.

【答案】1)当点为上底面圆的圆心时,证明见解析.(2

【解析】

1)当点为上底面圆的圆心时,平面,取上底面圆的圆心为,连接,先证明四边形为平行四边形,可得到,然后可得四边形为平行四边形,然后得到即可.

2)以为原点,建立如图所示的空间直角坐标系,算出平面的法向量,平面的一个法向量为,然后算出答案即可.

1)当点为上底面圆的圆心时,平面.

证明如下:

如图,取上底面圆的圆心为,连接

.

所以四边形为平行四边形,

所以,所以.

,所以四边形为平行四边形,

所以.

因为平面平面

所以平面.

故点为上底面圆的圆心时,平面.

2)以为原点,建立如图所示的空间直角坐标系.

于是可得

所以.

设平面的一个法向量为

,得.

,则可取.

取平面的一个法向量为.

设平面与平面所成的锐二面角为,则

故平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数fx)在其图象上存在不同的两点Ax1y1),Bx2y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称fx)为“柯西函数”,则下列函数:

fx)=xx0);

fx)=lnx0x3);

fx)=cosx

fx)=x21.

其中为“柯西函数”的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,且抛物线在点处的切线斜率为,直线与抛物线交于两点(点在点左侧),且直线垂直于直线

1)求证:直线过定点,并求出定点坐标;

2)如图,直线轴于点,直线轴于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程。

已知曲线Ct为参数), C为参数)。

1)化CC的方程为普通方程,并说明它们分别表示什么曲线;

2)若C上的点P对应的参数为QC上的动点,求中点到直线

t为参数)距离的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某流行病爆发期间,某市卫生防疫部门给出的治疗方案中推荐了三种治疗药物的使用是互斥且完备的),并且感染患者按规定都得到了药物治疗.患者在关于这三种药物的有关参数及市场调查数据如下表所示:(表中的数据都以一个疗程计)

药物

单价(单位:元)

600

1000

800

治愈率

市场使用量(单位:人)

305

122

183

(Ⅰ)从感染患者中任取一人,试求其一个疗程被治愈的概率大约是多少?

(Ⅱ)试估算每名感染患者在一个疗程的药物治疗费用平均是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆柱内有一个三棱锥为圆柱的一条母线,为下底面圆的直径,.

1)在圆柱的上底面圆内是否存在一点,使得平面?证明你的结论.

2)设点为棱的中点,,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).

35.6%的客户认为态度良好影响他们的满意度;

156位客户认为使用礼貌用语影响他们的满意度;

③最影响客户满意度的因素是电话接起快速;

④不超过10%的客户认为工单派发准确影响他们的满意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的不规则几何体中,已知四边形是正方形,四边形是平行四边形,平面平面.

1)证明:

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面多边形中,是边长为2的正方形,为等腰梯形,的中点,且,现将梯形沿折叠,使平面平面

1)求证:平面

2)求直线与平面所成角的大小.

查看答案和解析>>

同步练习册答案