精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱ABC A 1B1C1的侧棱长和底面边长均为2,DBC 的中点.

(1) 求证:AD⊥平面B1BC C1

(2) 求证:A 1B//平面ADC1

(3) 求三棱锥C1 ADB1的体积.

【答案】(1)证明略.(2)证明略.(3).

【解析】

试题分析:(1)利用线面垂直的性质可得由正三角形的性质可得根据线面垂直的判定定理即可证明平面;(2)连接于点连接利用中位线,可得利用线面的平行的判定定理,可证平面;(3)利用等体积根据棱锥的体积公式可得结论.

试题解析:(1)证明是正三棱柱平面

平面是正三角形中点

平面.

证明连接于点连接是正三棱柱,得四边形为矩形的中点,又中点中位线,平面平面平面.

(3) .

【方法点晴】本题主要考查线面平行的判定定理、线面垂直的判定定理、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(2)是就是利用方法①证明的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,若直线上至少存在三个点,使得是直角三角形,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[0, ]
D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O的内接四边形BCED,BC为圆O的直径,BC=2,延长CB,ED交于A点,使得∠DOB=∠ECA,过A作圆O的切线,切点为P,

(1)求证:BD=DE;
(2)若∠ECA=45°,求AP2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列{an}的前n项和为Sn , 且满足 ,S7=56.
(1)求数列{an}的通项公式an
(2)若数列{bn}满足b1=a1且bn+1﹣bn=an+1 , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是直角梯形,.

(1)求二面角的余弦值;

(2)设是棱上一点,的中点,若与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

同步练习册答案