精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时, 的取值范围是(
A.
B.
C.
D.

【答案】A
【解析】解:∵f(x)=2x+sinx(x∈R),
∴f(﹣x)=﹣2x﹣sinx=﹣(2x+sinx)=﹣f(x),
即f(x)=2x+sinx(x∈R)是奇函数,
∵f(y2﹣2y+3)+f(x2﹣4x+1)≤0,
∴f(y2﹣2y+3)≤﹣f(x2﹣4x+1)=f[﹣(x2﹣4x+1)],
由f'(x)=1﹣cosx≥0,
∴函数单调递增.
∴(y2﹣2y+3)≤﹣(x2﹣4x+1),
即(y2﹣2y+3)+(x2﹣4x+1)≤0,
∴(y﹣1)2+(x﹣2)2≤1,
∵y≥1,
∴不等式对应的平面区域为圆心为(2,1),半径为1的圆的上半部分.
的几何意义为动点P(x,y)到定点A(﹣1,0)的斜率的取值范围.
设k= ,(k>0)
则y=kx+k,即kx﹣y+k=0.
当直线和圆相切是,圆心到直线的距离d= =1,
即8k2﹣6k=0,解得k= .此时直线斜率最大.
当直线kx﹣y+k=0.经过点B(3,1)时,直线斜率最小,
此时3k﹣1+k=0,即4k=1,解得k=
≤k≤
故选:A.

【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在定义域内既是奇函数又是减函数的是(  )
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(I)求证:AC⊥平面BCE;
(II)求三棱锥E﹣BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:

空气质量指数()

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

10

5

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)由频率分布直方图,求该组数据的众数和中位数;

(3)在空气质量指数分别属于的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离按照北京市行道树修剪规范要求,当树木与原有电力线发生矛盾时,应及时修剪树枝行道树修剪规范中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表

电力线

安全距离单位:

水平距离

垂直距离

330KV

500KV

现有某棵行道树已经自然生长2年,高度为据研究,这种行道树自然生长的时间与它的高度满足关系式

1______;将结果直接填写在答题卡的相应位置上

2如果这棵行道树的正上方有35kV的电力线,该电力线距地面那么这棵行道树自然生长多少年必须修剪?

3假如这棵行道树的正上方有500KV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (aR,e为自然对数的底数).

(1)若曲线yf(x)在点(1,f(1))处的切线平行于x轴,求a的值;

(2)a=1时,若直线lykx-1与曲线yf(x)相切,求l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,焦点在x轴上,椭圆的左顶点坐标为,离心率为

求椭圆E的方程;

过点作直线lEPQ两点,试问:在x轴上是否存在一个定点M,使为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案