精英家教网 > 高中数学 > 题目详情
15.已知双曲线的焦距为2$\sqrt{3}$,焦点到一条渐近线的距离为$\sqrt{2}$,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-y2=1
C.x2-$\frac{{y}^{2}}{2}$=1或y2-$\frac{{x}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1或$\frac{{y}^{2}}{2}$-x2=1

分析 分类讨论,设出双曲线的方程,利用双曲线的焦距为2$\sqrt{3}$,焦点到一条渐近线的距离为$\sqrt{2}$,列出方程组,求出几何量,即可得出双曲线的标准方程.

解答 解:由题意,
焦点在y轴上,设双曲线的方程为$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0),其上焦点为(0,c),一条渐近线为y=$\frac{a}{b}$x.
∵双曲线的焦距为2$\sqrt{3}$,焦点到一条渐近线的距离为$\sqrt{2}$,
∴2c=2$\sqrt{3}$,$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{2}$,∴c=$\sqrt{3}$,b=$\sqrt{2}$,
∴a=1,
∴双曲线的标准方程为y2-$\frac{{x}^{2}}{2}$=1.
同理,焦点在x轴上,方程为x2-$\frac{{y}^{2}}{2}$=1
故选:C.

点评 本题考查双曲线的标准方程与几何性质,考查学生的计算能力,正确理解双曲线的几何性质是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求数列$\{a_n^{\;}\}$的通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y=f(x)的定义域是[-2,2],则函数g(x)=$\frac{f(2x)}{x}$的定义域是[-1,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,已知函数y=loga(x-3)+2(a>0,且a≠1)过定点P,且角α的终边过点P,始边是以x正半轴为始边,则3sin2α+cos2α的值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左顶点,F1,F2分别为双曲线的左、右焦点,P为双曲线上一点,G是△PF1F2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{3}x$B.$y=±2\sqrt{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.与λ的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{3}$-y2=1的两焦点作实轴的垂线,分别与渐近线交于A、B、C、D四点,则矩形ABCD的面积为(  )
A.$\frac{16}{3}$$\sqrt{3}$B.3C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2x-3在[0,3)上的值域为[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=4x-2x+1,x∈[-3,2]的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下面给出的四个命题中:
①若m=-2,则直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直;
②命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
③将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位,得到函数$y=sin({2x-\frac{π}{6}})$的图象.
其中是真命题的有①②(将你认为正确的序号都填上).

查看答案和解析>>

同步练习册答案