精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

【答案】(1).(2)见解析。

【解析】试题分析:(1)根据 两点关于y轴对称,由椭圆的对称性可知C经过 两点.另外由知,C不经过点P1,所以点P2C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1k2,再设直线l的方程,当lx轴垂直时,通过计算,不满足题意,再设l ),将代入,写出判别式,利用根与系数的关系表示出x1+x2x1x2,进而表示出,根据列出等式表示出的关系,从而判断出直线恒过定点.

试题解析:(1)由于 两点关于y轴对称,故由题设知C经过 两点.

又由知,C不经过点P1,所以点P2C上.

因此,解得.

C的方程为.

(2)设直线P2A与直线P2B的斜率分别为k1k2

如果lx轴垂直,设lx=t,由题设知,且,可得AB的坐标分别为(t ),(t ).

,得,不符合题设.

从而可设l ).将代入

由题设可知.

Ax1y1),Bx2y2),则x1+x2=x1x2=.

.

由题设,故.

.

解得.

当且仅当时, ,欲使l ,即

所以l过定点(2,

点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(
A.y=x3 , x∈R
B.y=sinx,x∈R
C.y=﹣x,x∈R
D.y=( x , x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2, )在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?

资金

单位产品所需资金(百元)

空调机

洗衣机

月资金供应量(百元)

成本

30

20

300

劳动力(工资)

5

10

110

单位利润

6

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,则该球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[﹣π,π]上的最大值和最小值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形, 相交于点 平面 平面 中点.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)当直线与平面所成角为时,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案