【题目】若函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上不单调,则实数k的取值范围为 .
【答案】(﹣5,﹣2)
【解析】解:f′(x)=3x2+2(k﹣1)x+k+5, 若函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上单调,
则4(k﹣1)2﹣12(k+5)≤0 ①
或 ②
或 ③
或 ④.
解①得﹣2≤k≤7;解②得k≥1;解③得k∈;解④得k≤﹣5.
综上,满足函数f(x)=x3+(k﹣1)x2+(k+5)x﹣1在区间(0,2)上单调的k的范围为k≤﹣5或k≥﹣2.
于是满足条件的实数k的范围为(﹣5,﹣2).
所以答案是:(﹣5,﹣2).
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.
(1)若CE=2EC1 , 求三棱锥E﹣ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2016年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:,,,,,后得到如图所示的频率分布直方图.
(l)计算这40名广场舞者中年龄分布在的人数;
(2)若从年龄在中的广场舞者任取2名,求这两名广场舞者中恰有一人年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn . 对于任意的正整数n,an+Sn=fk(n)都成立. (Ⅰ)若k=0,求证:数列{an}是等比数列;
(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2eax , a>0.
(1)证明:函数y=f(x)在(0,+∞)上为增函数;
(2)若方程f(x)﹣1=0有且只有两个不同的实数根,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[20,25),[25,30),[30,35),[35,40),[40,45].
(Ⅰ)求图中x的值并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com