精英家教网 > 高中数学 > 题目详情

已知F1、F2分别是椭圆数学公式的左焦点和右焦点,点M在椭圆上,且∠F1MF2=数学公式,求:
(1)△F1MF2的面积;
(2)M点的坐标.

解:(1)∵椭圆
∴a2=16,b2=12
∴c2=a2-b2=4
∴c=2,a=4,
∴椭圆的左焦点和右焦点分别为(±2,0)
设|MF1|=m,|MF2|=n,则
∴m=n=4
∴M为椭圆的上顶点(或下顶点)
∴△F1MF2的面积为=
(2)∵M为椭圆的上顶点(或下顶点),
∴M点的坐标为
分析:(1)先根据椭圆的标准方程,利用椭圆的定义及余弦定理,构建方程,从而确定M为椭圆的上顶点(或下顶点),进而可求)△F1MF2的面积;
(2)根据M为椭圆的上顶点(或下顶点),可求M点的坐标.
点评:本题重点考查椭圆的几何性质,考查余弦定理的运用,确定M为椭圆的上顶点(或下顶点),是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)已知F1,F2分别是椭圆E:
x25
+y2=1
的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)已知F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦点,P是双曲线的上一点,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,则双曲线的离心率是
 

查看答案和解析>>

同步练习册答案