精英家教网 > 高中数学 > 题目详情

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

【答案】(1) (0,4)(2) 实数m的取值范围为(4,+).

【解析】试题分析:(1)先解不等式得p再由pq成立的必要不充分条件得 ,最后根据集合包含关系以及数轴求实数m的取值范围.(2)先根据原命题与逆否命题等价得pq的充分不必要条件即得,最后根据集合包含关系以及数轴求实数m的取值范围.

试题解析:p:-2x6

(1)pq的必要不充分条件[2m,2m] [2,6]m4.

∵当m4不符合条件m0m的取值范围是(0,4).

(2)的充分不必要条件pq的充分不必要条件

[2,6][2m,2m]的真子集.

 得m4m4不符合条件.∴实数m的取值范围为(4,+).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图三棱柱ABCA1B1C1的底面是边长为4的正三角形AA1⊥平面ABCAA12MA1B1的中点

(1)求证MCAB;

(2)在棱CC1上是否存在点P使得MC⊥平面ABP若存在确定点P的位置若不存在说明理由

(3)若点PCC1的中点求二面角BAPC的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,点的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台,平面平面,,BE=EF=FC=1,BC=2,AC=3.

)求证:EF⊥平面ACFD

)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,对任意,均有恒成立.下列说法:

的周期为

②若为常数)的图像关于直线对称,则

③若,则必有

④已知定义在上的函数对任意均有成立,且当时, 又函数为常数),若存在使得成立,则的取值范围是.其中说法正确的是____.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥SABC中,△ABC是等腰三角形,ABBC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,则点A到平面SBC的距离为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1上任意一点M到直线ly=4的距离是它到点F(0,1)距离的2倍;曲线C2是以原点为顶点,F为焦点的抛物线.

(1)求C1C2的方程;

(2)设过点F的直线与曲线C2相交于AB两点,分别以AB为切点引曲线C2的两条切线l1l2,设l1l2相交于点P,连接PF的直线交曲线C1CD两点,求的最小值.

查看答案和解析>>

同步练习册答案