精英家教网 > 高中数学 > 题目详情
18.一几何体的三视图如图所示,则该几何体的各个面中面积最大的面的面积为(  )
A.4B.5C.$\frac{9}{2}$D.6

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,分别求出各个面的面积,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,
其直观图如图所示:
底面△BCD的面积为:$\frac{1}{2}$×2×4=4,
侧面△ABD的面积为:$\frac{1}{2}$×2×4=4,
侧面△ABC的面积为:$\frac{1}{2}$×2×2=2,
侧面△ACD是腰长为2$\sqrt{5}$,底长2$\sqrt{2}$的等腰三角形,故底边上的高为$\sqrt{(2\sqrt{5})^{2}-{\sqrt{2}}^{2}}$=3$\sqrt{2}$,
其面积为:$\frac{1}{2}$×2$\sqrt{2}$×3$\sqrt{2}$=6,
综上可知,最大的面的面积为6,
故选:D

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an},观察程序框图,若k=5,k=10时,分别有S=25,S=100.
(1)试求数列{an}的通项;
(2)令${b_n}=n{2^{a_n}}$,求{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲罐中5个红球,2个白球和3个黑球,乙罐中4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是(  )
A.P(B)=$\frac{2}{5}$
B.事件B与事件A1相互独立
C.P(B|A1)=$\frac{5}{11}$
D.P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆3x2+2y2=6的焦距为(  )
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离的差都是2,建立适当的坐标系,求这条曲线的方程.(用两种方法)
方法一:以直线l所在直线为x轴,过F与l垂直的直线为y轴
方法二:以过F与l垂直的直线为y轴,过F与y轴垂直的直线为x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin($\frac{π}{2}$x)
②f(x)=|2x-1|
③f(x)=2x2-1
④f(x)=log2(2x-2).
其中存在唯一“可等域区间”的“可等域函数”的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的二次方程x2+2mx+2m+1=0.
(1)当m=1时,判断方程根的情况.
(2)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)设F是C1的左焦点,E是C1右支上一点.若|EF|=2$\sqrt{2}$,求E点的坐标;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1.若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x3+3ax2+(a2+3a-1)x+a在x=-1时取得极值,则a=1,2.

查看答案和解析>>

同步练习册答案