精英家教网 > 高中数学 > 题目详情
设实数x,y,z均大于零,且,则的最小值是  

试题分析:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32
故x2+y2+z2,当且仅当,即:x2+y2+z2的最小值为
故答案为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(湖北理21)(本小题满分14分)
已知mn为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx
(Ⅱ)对于n≥6,已知,求证m=1,1,2…,n
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为常数,且
小题1:证明对任意
小题2:假设对任意,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}中,a1=
2
2
an+1=
n+1
n+2
an(n=1,2,…)
.计算a2,a3,a4的值,根据计算结果,猜想an的通项公式,并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设向量,其中,由不等式 恒成立,可以证明(柯西)不等式(当且仅当,即时等号成立),己知,若恒成立,利用可西不等式可求得实数的取值范围是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方形ABCD,AB=2,若将沿正方形的对角线BD所在的直线进行翻折,则在翻折的过程中,四面体的体积的最大值是____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数的最大值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明不等式成立,起始值至少应取为( )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知

查看答案和解析>>

同步练习册答案