精英家教网 > 高中数学 > 题目详情

【题目】已知函数x[1e]时,fx)的最小值为_____;设gx)=[fx]2fx+a若函数gx)有6个零点,则实数a的取值范围是_____

【答案】4 0

【解析】

根据各段函数的单调性分别求出各段的最小值或者下确界,即可求出时,的最小值;

,根据题意再结合函数的图象,以及的图象即可求出实数的取值范围.

解:当时,,此时函数在区间上单调递增,故此时函数最小值为

时,,则时,(舍或0,

且有上单调递增,在上单调递减,

因为

故函数上的最小值为

作出函数的图象,如图所示:

直线与函数的图象最多只有三个交点,所以

即说明方程有两个内的不等根,

亦即函数内的图象与直线有两个交点,

因为,根据的图象可知,

即实数的取值范围为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1F2分别为双曲线Ca0b0)的左、右焦点,点Mx0y0)(x00)为C的渐近线与圆x2+y2a2的一个交点,O为坐标原点,若直线F1MC的右支交于点N,且|MN||NF2|+|OF2|,则双曲线C的离心率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)讨论的单调性;

2)若上仅有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx

1)讨论函数fx)的单调性;

2)证明:a1时,fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知的太极图,其形状如对称的阴阳两鱼互抱在一起,也被称为阴阳鱼太极图.如图是放在平面直角坐标系中的太极图.整个图形是一个圆形.其中黑色阴影区域在y轴右侧部分的边界为一个半圆,给出以下命题:

①在太极图中随机取一点,此点取自黑色阴影部分的概率是

②当时,直线yax+2a与白色部分有公共点;

③黑色阴影部分(包括黑白交界处)中一点(xy),则x+y的最大值为2

④设点P(﹣2b),点Q在此太极图上,使得∠OPQ45°b的范围是[22]

其中所有正确结论的序号是(

A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数)和k为常数),有以下命题:①当时,函数没有零点;②当时,若恰有3个不同的零点,则;③对任意的,总存在实数,使得4个不同的零点,且成等比数列.其中的真命题是_____(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案