【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点, , , 分别在棱, , , 上,水面恰好过点, , , ,且.
(1)证明: ;
(2)若底面水平放置时,求水面的高.
科目:高中数学 来源: 题型:
【题目】如图,等边三角形的边长为,且其
三个顶点均在抛物线上.
(Ⅰ)求抛物线的方程;
(Ⅱ)设动直线与抛物线相切于点,与直线
相交于点.证明以为直径的圆恒过轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,曲线C的参数方程为 (是参数,0≤≤π),以O 为极点,以x 轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)直线l1,的极坐标方程是2psin(θ+)+=0,直线l2:θ =与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )
A. y2=9x B. y2=6x C. y2=3x D. y2=x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=aln x+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数f(x)的解析式及单调区间;
(2)若函数g(x)=f(x)+m-ln 4在上恰有两个零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知短轴长为2的椭圆,直线的横、纵截距分别为,且原点到直线的距离为.
(1)求椭圆的方程;
(2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在参加某次社会实践的学生中随机选取名学生的成绩作为样本,这名学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.在选取的名学生中.
(Ⅰ)求的值及成绩在区间内的学生人数.
(Ⅱ)从成绩小于分的学生中随机选名学生,求最多有名学生成绩在区间内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com