精英家教网 > 高中数学 > 题目详情

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

【答案】(1)见解析(2)

【解析】试题分析:(1直三棱柱容器侧面水平放置,所以平面平面,由面面平行性质得2当底面ABC水平放置时,水的形状为四棱柱形,由已知条件求出水的体积,由于是三棱柱形容器,故水的体积可以用三角形的面积直接表示出,不必求三角形的面积.

1证明:因为直三棱柱容器侧面水平放置,

所以平面平面

因为平面平面,平面平面

所以

(2)解;当侧面水平放置时,可知液体部分是直四棱柱,

其高即为直三棱柱容器的高,即侧棱长10.

由(I)可得,又

所以.

当底面水平放置时,设水面的高为,由于两种状态下水的体积相等,

所以,即

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的边长为,且其

三个顶点均在抛物线.

(Ⅰ)求抛物线的方程;

(Ⅱ)设动直线与抛物线相切于点,与直线

相交于点.证明以为直径的圆恒过轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系xOy 中,曲线C的参数方程为 (是参数,0≤≤π),以O 为极点,以x 轴的正半轴为极轴,建立极坐标系.

(Ⅰ)求曲线C 的极坐标方程;

(Ⅱ)直线l1,的极坐标方程是2psin(θ+)+=0,直线l2:θ =与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点AB,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为(   )

A. y2=9x B. y2=6x C. y2=3x D. y2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)aln xbx2图象上点P(1f(1))处的切线方程为2xy30.

(1)求函数f(x)的解析式及单调区间;

(2)若函数g(x)f(x)mln 4上恰有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知短轴长为2的椭圆直线的横、纵截距分别为,且原点到直线的距离为

1)求椭圆的方程;

2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在参加某次社会实践的学生中随机选取名学生的成绩作为样本,这名学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.在选取的名学生中.

Ⅰ)求的值及成绩在区间内的学生人数.

Ⅱ)从成绩小于分的学生中随机选名学生,求最多有名学生成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的两个根为.

(1)求的值;

(2)若函数上单调递减,解关于的不等式

查看答案和解析>>

同步练习册答案