精英家教网 > 高中数学 > 题目详情
7.圆柱被一个平面截去一部分与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若半球的半径r=2,则该几何体的表面积为16+20π.

分析 通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.

解答 解:由几何体三视图中的正视图和俯视图可知,
截圆柱的平面过圆柱的轴线,
该几何体是一个半球拼接半个圆柱,
∴其表面积为:$\frac{1}{2}$×4πr2+$\frac{1}{2}$×πr2$\frac{1}{2}$×2r×2πr+2r×2r+$\frac{1}{2}$×πr2=5πr2+4r2=16+20π.
故答案为:16+20π.

点评 本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,则该三棱锥四个面中,为直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多面体ABCDE中,AB⊥平面ACD,DE∥AB,AC=AD=CD=DE=2,F为CD的中点.
(Ⅰ)求平面ABC和平面CDE所成角的大小;
(Ⅱ)求点A到平面BCD的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4x+1,x>0}\\{-1+{{log}_2}(-x),x<0}\end{array}}$,若函数g(x)=f(x)-a有三个不同的零点x1,x2,x3,则x1+x2+x3的取值范围是(  )
A.(0,4)B.(-4,0)C.$(0,\frac{15}{4})$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正方形ABCD的边长为4,E,F分别是AB,AD的中点,PC⊥面ABCD,PC=2,求点B到平面PEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且${S_n}-1=3({a_n}-1),n∈{Z^+}$.
(1)求出数列{an}的通项公式;
(2)设数列{bn}满足${a_{n-1}}={(\frac{3}{2})^{{a_n}•{b_n}}}$,若bn≤t对于任意正整数n都成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{log_4}x,\;x>0\\{3^x},\;x≤0\end{array}\right.$,则f(2)+f(8)=2;$f[f(\frac{1}{16})]$=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前10项和等于(  )
A.1024B.1023C.512D.511

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点A(sin1,cos1)在直角坐标平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案