精英家教网 > 高中数学 > 题目详情
f(x)是定义在[-2π,2π]上的偶函数,当x∈[0,π]时,y=f(x)=cosx,当x∈(π,2π]时,f(x)的图象是斜率为
2
π
,在y轴上截距为-2的直线在相应区间上的部分.
(1)求f(-2π),f(-
π
3
);
(2)求f(x),并作出图象,写出其单调区间.
分析:(1)根据题意求得x∈(π,2π]时函数的解析式,进而求得f(2π)的值,然后利用函数的奇偶性求得f(-2π)的值.利用函数f(x)在∈[0,π]时的解析式求得f(
π
3
)的值,然后利用函数的奇偶性求得f(-
π
3
)的值.
(2)根据(1)可知函数的解析式,进而利用直线方程和余弦函数的单调性判断出函数的单调区间.
解答:精英家教网解:(1)当x∈(π,2π]时,y=f(x)=
2
π
x-2,
又f(x)是偶函数,
∴f(-2π)=f(2π)=2.
又x∈[0,π]时,y=f(x)=cosx,
∴f(-
π
3
)=f(
π
3
)=
1
2


(2)y=f(x)=
-
2
π
x-2    x∈[-2π,-π) 
cosx,x∈[-π,π]
2
π
x-2      x∈(π,2π] 

当x∈(π,2π]时,根据直线方程的单调性可知其为减函数;
当x∈[0,π]时,根据余弦函数的单调性可知为减函数;
当x∈[-π,0]时,根据余弦函数的单调性可知为增函数
当x∈[π,2π]时,函数的图象为直线,斜率大于0,可知为增函数.
故调区间为[-2π,-π),[0,π),[-π,0],[π,2π].
点评:本题主要考查了余弦函数的图象,函数的奇偶性的性质,函数的单调性和单调区间,以及分段函数的问题.注重了“双基”能力的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)是定义在(-2,2)上的奇函数,当x∈(0,2)时,f(x)=2x-1,则f(-
3
2
)
值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(x+4)=f(x)+f(4)成立,则f(2008)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-x.
(1)计算f(0),f(-1);
(2)当x<0时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,给出下列两个命题:
p:若f(x1)=f(x2),(x1≠x2),则x1+x2=4.
q:若x1,x2∈(-∞,2](x1≠x2),则
f(x1)-f(x2)x1-x2
>0

则使命题“p且q”为真命题的函数f(x)可以是
f(x)=-(x-2)2
f(x)=-(x-2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,满足f(a•b)=af(b)+bf(a).又已知f(2)=2,an=
f(2n)
n
bn=
f(2n)
2n
(n∈N*)
,考查下列结论:①f(0)=0;②f(-1)=-1;③a2是a1,a3的等比中项;④b2是b1,b3的等差中项.其中正确的是
①③④
①③④
.(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案