精英家教网 > 高中数学 > 题目详情
已知函数是奇函数,(其中)
(1)求实数m的值;
(2)在时,讨论函数f(x)的增减性;
(3)当x时,f(x)的值域是(1,),求n与a的值。
(1);(2)上都是增函数;(3)

试题分析:(1)奇函数对应的是,由此可求出;(2)对函数,判断它的单调性,应先求出定义域,然后在定义域的两个区间上分别用单调性的定义来说明函数的单调性,这里可以先讨论对数的真数的单调性,如设,判断出这个差是正数后,即得,而由于,则有,于是可得函数在上是递增的;(3)已知条件是函数的值域是,因此我们可以由值域来求自变量的取值范围,即,由于,不等式可转化为,故,这就应该是已知的范围,从而有,可得结论.
试题解析:(1)         4分
(2)由(1),定义域为.         5分
讨论在上函数的单调性.
任取,设,令,则
所以
因为,所以
所以.          7分
又当时,是减函数,所以.由定义知在上函数是增函数.         8分
又因为函数是奇函数,所以在上函数也是增函数.        9分
(3)当时,要使的值域是,则,所以,即,         11分
,上式化为,又,所以当时,;当时,;         13分
因而,欲使的值域是,必须,所以对上述不等式,当且仅当时成立,所以解得.          18分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
x
45
50
y
27
12
(I)确定的一个一次函数关系式
(Ⅱ)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一块形状为直角三角形的铁皮,两直角边长分别为40 cm、60 cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(-3x)+1,则f(lg 2)+f=(  ).
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a);
(2)是否存在实数mn同时满足下列条件:
mn>3;
②当h(a)的定义域为[nm]时,值域为[n2m2]?若存在,求出mn的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案