精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=log2(4x+1)-x,则下面结论正确的是(  )
A.函数y=f(x+2)的对称轴为x=-2B.函数y=f(2x)的对称轴为x=2
C.函数y=f(x+2)的对称中心为(2,0)D.函数y=f(2x)的对称中心为(2,0)

分析 由已知中函数f(x)=log2(4x+1)-x,分析函数的奇偶性和对称性,进而可得答案.

解答 解:∵函数f(x)=log2(4x+1)-x=${log}_{2}\frac{{4}^{x}+1}{{2}^{x}}$=${log}_{2}({2}^{x}+\frac{1}{{2}^{x}})$,
∴函数f(-x)=log2(4-x+1)+x=${log}_{2}[(\frac{1}{{4}^{x}}+1)•{2}^{x}]$=${log}_{2}({2}^{x}+\frac{1}{{2}^{x}})$,
∴f(-x)=f(x),
即函数f(x)为偶函数,图象关于y轴对称,
故函数y=f(x+2)的对称轴为x=-2,
故选:A.

点评 本题考查的知识点是函数的图象,函数的性质,分析出原函数的奇偶性和单调性,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知抛物线的顶点为坐标原点,焦点是圆x2+(y-3)2=4的圆心,则抛物线的方程是(  )
A.y2=6xB.x2=6yC.y2=12xD.x2=12y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7}{2}$B.$\sqrt{10}$C.4D.$\frac{2+\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了解重庆某社区居民的家庭年收入和年支出的关系,随机调查了5户家庭,得到统计数据表,根据下表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.5$,$\widehata=\overline y-\widehatb\overline x$,据此估计,该社区一户收入为18万元家庭年支出为(  )
收入x(万元)68101214
支出y(万元)678910
A.15万元B.14万元C.13万元D.12万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是(  )
A.圆柱B.圆锥C.棱锥D.棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某三棱锥的三视图如图所示,则该三棱锥中最长棱的棱长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(Ⅰ)根据以上数据完成下面2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(Ⅱ)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(Ⅲ)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)由以上数据经计算得:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{1}{2}$,求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值是-1,最小正周期为2π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(α+β)=-$\frac{3}{5}$,f(α-β)=$\frac{4}{5}$,求tanαtanβ的值.

查看答案和解析>>

同步练习册答案