精英家教网 > 高中数学 > 题目详情
0
|sinx|dx的值为(  )
A、0B、2C、4D、2π
考点:定积分
专题:导数的概念及应用
分析:根据积分的公式即可得到结论.
解答: 解:
0
|sinx|dx=2∫
 
π
0
sinxdx=2(-cosx)|
 
π
0
=4.
故选:C
点评:本题主要考查积分的计算,要求熟练积分的公式和运算法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是(  )
A、18B、19C、16D、17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-
π
2
<x<0,sinx+cosx=
1
5

(1)求sinx-cosx的值;
(2)求3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图中,如果输入三个实数a、b、c,要求输出这三个数中最小的数,那么在空白的判断框中,应该填入下面四个选项中的(  )
A、c<xB、x<c
C、c<bD、b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分条件
C、命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命题“若x=y,则cosx=cosy”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<m<
1
2
,若
1
m
+
8
1-2m
≥k恒成立,则实数k的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量X是离散型随机变量,X∽B(n,p)且EX=1.6,DX=1.28,则数对X~B(n,p)的取值为   (  )
A、(8,0.2)
B、(5,0.32)
C、(7,0.45)
D、(4,0.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(
2
)-2+log84
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
2
+y2=1.
(Ⅰ)我们知道圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.类比圆的这个性质,写出椭圆C1的类似性质,并加以证明;
(Ⅱ)如图(1),点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(Ⅲ)如图(2),过椭圆C2
x2
8
+
y2
2
=1上任意一点P作C1的两条切线PM和PN,切点分别为M,N.当点P在椭圆C2上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案