精英家教网 > 高中数学 > 题目详情
圆x2+y2=8内有一点P0 (-1,2),当弦AB被P0平分时,直线AB的方程为
x-2y+5=0
x-2y+5=0
分析:设A(x1,y1),B(x2,y2),由弦AB被P0 (-1,2)平分,知x1+x2=-2,y1+y2=4,由此利用点差法能求出直线AB的方程.
解答:解:设A(x1,y1),B(x2,y2),
∵弦AB被P0 (-1,2)平分,
∴x1+x2=-2,y1+y2=4,
把A(x1,y1),B(x2,y2)代入圆x2+y2=8,
x12+y12=8,①
x22+y22=8,②

①-②,得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0,
∴-2(x1-x2)+4(y1-y2)=0.
∴k=
y1-y2
x1-x2
=
1
2

∴直线AB的方程为y-2=
1
2
(x+1),即x-2y+5=0.
故答案为:x-2y+5=0.
点评:本题考查直线方程的求法,是基础题.解题时要认真审题,仔细解答,注意点差法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦;
(1)当a=
4
时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为原点,圆x2+y2=8内有一点P(1,2),AB和CD为过点P的弦.
(1)当弦AB被点P平分时,求直线AB的方程;
(2)若
OA
OB
=1
,求直线AB的斜率;
(3)若AB⊥CD,求四边形ABCD面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2=8内有一点P(-1,2),弦AB过点P,且倾斜角为α
(1)若 sinα=
45
,求线段AB的长;
(2)若弦AB恰被P平分,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春模拟)圆x2+y2=8内有一点P(-1,2),AB为过点P但不与x轴垂直的弦,O为坐标原点.则
OA
OB
的取值范围
[-8,2]
[-8,2]

查看答案和解析>>

同步练习册答案