精英家教网 > 高中数学 > 题目详情

【题目】(1)求过点且与两坐标轴截距相等的直线的方程;

(2)已知正方形的中心为直线和直线的交点,且边所在直线方程为,求边所在直线的方程.

【答案】(1) (2)

【解析】

(1)根据截距相等,讨论截距是否为0,分别设出直线方程,即可得解。

(2)先求得正方形中心的坐标,利用对边平行可设出直线CD的方程,再利用点到直线距离公式即可求得CD的直线方程。

(1)当截距为0时,设直线方程为代入点可得

所以直线方程为

当截距不为0时,设直线方程为

代入点可得

所以直线方程为

综上所述,直线的方程为

(2)由,得

即中心坐标为

∵正方形边所在直线方程为

∴可设正方形边所在直线方程为

∵正方形中心到各边距离相等,

(舍)

边所在直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}= ,则min{h(0),h(1)}的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则 的最大值为(

A.3
B.2
C.6
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:

x

4

5

7

8

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为的雾霾天数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为

(1)当直线过点时,求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知椭圆的离心率为椭圆C长轴长为4

1求椭圆C的方程;

2已知直线与椭圆C交于A,B两点是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在求出k的值;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4 ,∠CDA=120°,点N在线段PB上,且PN=2.

(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)若函数f(x)=|2x﹣1|+|2x﹣3|的最小值,并求取的最小值时x的取值范围;
(2)若g(x)= 的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R).
(1)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a、b的值;
(2)在(1)的条件下,证明f(x)≤g(x)在(0,+∞)上恒成立;
(3)若a=1,b>2e,求方程f(x)﹣g(x)=x在区间(1,eb)内实根的个数(e为自然对数的底数).

查看答案和解析>>

同步练习册答案