精英家教网 > 高中数学 > 题目详情
3.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|=$\frac{2\sqrt{3}}{3}$|$\overrightarrow{a}$|,则$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{6}$.

分析 运用向量的平方即为模的平方,可得$\overrightarrow{a}$•$\overrightarrow{b}$=0,再由向量的数量积的夹角公式计算即可得到所求值.

解答 解:由|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,两边平方可得,
($\overrightarrow{a}+\overrightarrow{b}$)2=($\overrightarrow{a}-\overrightarrow{b}$)2,即为$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2
即有$\overrightarrow{a}$•$\overrightarrow{b}$=0,
则($\overrightarrow{a}+\overrightarrow{b}$)•$\overrightarrow{a}$=$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|2
即有cos<$\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{a}$>=$\frac{(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow{b}|•|\overrightarrow{a}|}$=$\frac{|\overrightarrow{a}{|}^{2}}{\frac{2\sqrt{3}}{3}|\overrightarrow{a}{|}^{2}}$=$\frac{\sqrt{3}}{2}$,
由0≤<$\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{a}$>≤π,可得<$\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{a}$>=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查向量的夹角的求法,注意运用向量的数量积的夹角公式和性质:向量的平方即为模的平方,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,已知圆C的圆心在y轴的正半轴上,且与x轴相切,圆C与直线y=kx+3相交于A,B两点.当$k=\sqrt{3}$时,$|AB|=\sqrt{15}$.
(Ⅰ)求圆C的方程;
(Ⅱ)当k取任意实数时,问:在y轴上是否存在定点T,使得∠ATB始终被y轴平分?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我国是水资源相对匿乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施.规定每季度每人用水量不超过5吨时,每吨水费收基本价1.3元.若超过5吨而不超过6吨时,超过部分每吨水费收3.9元,若超过6吨而不超过7吨时,超过部分每吨水费收6.5元.
(1)如果某人本季度实际用水量为x(x≤7)吨,设本季度他应交水费为y元,试求出y与x的函数解析式;
(2)画出(1)中求出的函数图象;
(3)如果小王本季度应交水费11.7元,那么这一季度他实际用水量是多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{π}{4}<a<\frac{π}{2}$,则sina,cosa,tana的大小关系为cosα<sinα<tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当a>1时.函数y=af(x)与y=f(x)具有相同的的单调性;当0<a<1时.函数y=af(x)与y=f(x)具有相反的的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.己知f(x)是偶函数,并且其图象与x有(n∈N)个交点,则方程f(x)=0的所有实数根之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求圆心在直线3x+y-5=0上,并且经过原点和点(3,-1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=sin(2ωx+φ),(0<ω<2π)以2为最小正周期,且在x=2时取最大值,则φ=2kπ-$\frac{3π}{2}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn.且Sn=2an+2n-6(n∈N*).
(1)判断数列{an-2}是否成等比数列,并求数列{an}的通项公式:
(2)设Tn=$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{2}{{a}_{3}-{a}_{2}}$+…+$\frac{n}{{a}_{n+1}-{a}_{n}}$(n∈N* ),求Tn

查看答案和解析>>

同步练习册答案