精英家教网 > 高中数学 > 题目详情

【题目】如图,在以为顶点的五面体中,四边形为正方形,

1)证明

2)求二面角的平面角的余弦值.

【答案】1)见解析;(2.

【解析】

1)证明出平面,然后利用线面平行的性质定理可证明出,再利用空间平行线的传递性可得出结论;

2)证明出平面平面,然后作,垂足为,可得出平面,由此以点为坐标原点,的方向为轴正方向,的方向为轴正方向,为单位长建立空间直角坐标系,利用空间向量法能求出二面角的平面角的余弦值.

1四边形为正方形,

平面平面平面

平面,平面平面,因此,

平面

平面平面平面

,垂足为平面,平面平面平面

以点为坐标原点,方向为轴正方向,轴正方向,为单位长,如图建立空间直角坐标系,

设平面的法向量为

,即,取,则,所以,

设平面的法向量为

,令,则

设二面角的平面角为

即二面角的平面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形中,点边的中点,将沿折起,使平面平面,连接,得到如图②所示的几何体.

1)求证:平面

2)若,二面角的平面角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其准线的距离为2.

(1)求抛物线的方程;

(2)如图为抛物线上三个点,,若四边形为菱形,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项都是1的两个数列{},{}(≠0,n∈N*)满足

(1)令,求数列{}的通项公式;

(2)若,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学高三的一名学生在高考前对他在高三近一年中的所有数学考试(含模拟考试、月考、平时训练等各种类型的试卷)分数进行统计,以此来估计自己在高考中的大致分数.为此,随机抽取了若干份试卷作为样本,根据此样本数据作出如下频率分布统计表和频率分布直方图.

分组

频数

频率

20

0.25

50

4

0.05

1)求表中的值和频率分布直方图中的值;

2)若同组中的每个数据用该组区间的中点值代替,试根据频率分布直方图求该学生高三年级数学考试分数的中位数和平均数,并对该学生自己在高考中的数学成绩进行预测.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件的最小值为7,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求函数的单调区间;

2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.65.0之间的学生数为b,则ab的值分别为 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数.

讨论函数的单调性;

若存在,使得不等式成立,求的取值范围.

查看答案和解析>>

同步练习册答案