【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ= 与曲线 (t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为 .
科目:高中数学 来源: 题型:
【题目】据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求函数的最小正周期和单调递减区间;
(2)将函数的图象向右平移个单位后,再将所得图象的纵坐标不变,横坐标伸长到原来的2倍,得到的函数的图象关于轴对称,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点
(Ⅰ)求实数的值;
(Ⅱ)若,求的取值范围;
(Ⅲ)若向量与向量共线(为坐标原点),求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上是增函数,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
则当x∈[2,+∞)时,
x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数
即,f(2)=4+a>0
解得﹣4<a≤4
故选:C.
【点睛】
本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.
【题型】单选题
【结束】
10
【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延误天数Y | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=,x∈(-2,2).
(1) 判断f(x)的奇偶性并说明理由;
(2) 求证:函数f(x)在(-2,2)上是增函数;
(3) 若f(2+a)+f(1-2a)>0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线,圆:.
(Ⅰ)求的取值范围,并求出圆心坐标;
(Ⅱ)若圆的半径为1,过点作圆的切线,求切线的方程;
(Ⅲ)有一动圆的半径为1,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com