精英家教网 > 高中数学 > 题目详情

【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ= 与曲线 (t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为

【答案】(2.5,2.5)
【解析】解:射线θ= 的直角坐标方程为y=x(x≥0),曲线 (t为参数)化为普通方程为y=(x﹣2)2
联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4
∴线段AB的中点的横坐标为2.5,纵坐标为2.5
∴线段AB的中点的直角坐标为(2.5,2.5)
所以答案是:(2.5,2.5)
【考点精析】解答此题的关键在于理解抛物线的参数方程的相关知识,掌握抛物线的参数方程可表示为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.

1)写出月总成本(万元)关于月产量(吨)的函数关系;

2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;

3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小正周期和单调递减区间;

(2)将函数的图象向右平移个单位后,再将所得图象的纵坐标不变,横坐标伸长到原来的2倍,得到的函数的图象关于轴对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴交于两点,且为圆心),过点且斜率为的直线与圆相交于两点

(Ⅰ)求实数的值;

(Ⅱ)若,求的取值范围;

(Ⅲ)若向量与向量共线(为坐标原点),求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,x∈(-2,2).

(1) 判断f(x)的奇偶性并说明理由;

(2) 求证:函数f(x)在(-2,2)上是增函数;

(3) 若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)设正实数满足,则()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,圆.

(Ⅰ)求的取值范围,并求出圆心坐标;

(Ⅱ)若圆的半径为1,过点作圆的切线,求切线的方程;

(Ⅲ)有一动圆的半径为1,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

同步练习册答案